Prediction of bend force and bend angle in air bending of electrogalvanized steel using response surface methodology
Tóm tắt
This paper presents the development of predictive models for bend force and final bend angle (after springback) in air bending of electrogalvanized steel sheet employing response surface methodology. The models are developed based on five-level half factorial central composite design of experiments with strain hardening exponent, coating thickness, die opening, die radius, punch radius, punch travel, punch velocity as input parameters and bend force and final bend angle as responses. The results obtained from the models are in good accord with the experimental results. The effects of individual parameters and their interactions on the responses have also been analyzed in this study.
Tài liệu tham khảo
L. J. De Vin, Curvature prediction in air bending of metal sheet, J. Mater. Process. Technol., 100(1–3) (2000) 257–261.
H. M. Jiang, X. P. Chen, C. Wu and H. H. Li, Forming characteristics and mechanical parameter sensitivity study on pre-phosphated electro-galvanized sheet steel, J. Mater. Process. Technol., 151(1–3) (2004) 248–254.
Y. M. Huang and D. K. Leu, Effects of process variables on V-die bending process of steel sheet, Int. J. Mech. Sci., 40(7) (1998) 631–650.
M. S. Hamouda, F. Abu Khadra, M. M. Hamadan, R. M. Inhemed and E. Mehdi, Springback in v-bending: a finite element approach, Int. J. Mater. Prod. Technol., 21(1–3) (2004) 124–136.
D. Fei and P. Hodgson, Experimental and numerical studies of springback in air v-bending process for cold rolled TRIP steels, Nucl. Eng. Des., 236(18) (2006) 1847–1851.
R. Narayanasamy and P. Padmanabhan, Effects of material orientation on air bending of interstitial free steel sheet, J. manufacturing engineering, 3(3) (2008) 163–169.
R. Narayanasamy and P. Padmanabhan, Experimental investigations on effect of process parameters during air bending of interstitial free steel sheet, J. Manufacturing Engineering, 3(4) (2008) 248–255.
M. L. Garcia-Romeu and J. Ciurana, Springback and geometry prediction — Neural networks applied to the air bending process, Huang, D. S., Li, K. and Irwin, G. W. Eds. ICIC 2006, LNCS 4113, Springer-Verlag, Berlin Heidelberg, (2006) 470–475.
M. A. Farsi and B. Arezoo, The determination of springback in L bending operation using neural networks, in Proc. 5th International Advanced Technologies symposium, Turkey (2009).
Z. Tan, B. Persson and C. Magnusson, An empiric model for controlling springback in V-die bending in sheet metals, J. Mater. Process. Technol., 34(1–4) (1992) 449–455.
C. Wang, G. Kinzel and T. Atlan, Mathematical modeling of plane-strain bending of sheet and plate, J. Mater. Process. Technol., 39(3–4) (1993) 279–304.
D. K. Leu, A simplified approach for evaluating bendability and springback in plastic bending of anisotropic sheet metals, J. Mater. Process. Technol., 66(1–3) (1997) 9–17.
K. L. Elkins and R. H. Sturges, Springback analysis and control in small radius air bending, J. Manuf. Sci. Eng., 121(4) (1999) 679–688.
W. Y. D. Yuen, A generalised solution for the prediction of springback in laminated strip, J. Mater. Process. Technol., 61(3) (1996) 254–264.
H. K. Yi, D. W. Kim, C. J. Van Tyne and Y. H. Moon, Analytical prediction of springback based on residual differential strain during sheet metal bending, Proc. of IMechE, Part C: J. of Mechanical Engineering Science, 222(2) (2007) 117–129.
R. H. Myers and D. C. Montgomery, Response surface methodology: Process and product optimization using designed experiments, 2nd ed., Wiley, New York, USA (2002).
M. Kleiber, J. Knabel and J. Rojek, Reliability assessment in metal forming operations, Procs. of the Fifth World Congress on Computational Mechanics (WCCMV), Vienna, Austria (2002) 39–40.
T. Ohata, Y. Nakamura, T. Katayama and E. Nakamachi, Development of optimum process design system for sheet fabrication using response surface method, J. Mater. Process. Technol., 143–144 (2003) 667–672.
P. Tiernan, B. Draganescu and M. T. Hillery, Modelling of extrusion force using the surface response method, Int. J. Adv. Mfg. Technol., 27(1–2) (2005) 48–52.
D. Lepadatu, R. Hambli, A. Kobi and A. Barreau, Optimisation of springback in bending processes using FEM simulation and response surface method, Int. J.. Adv. Mfg. Technol., 27(1–2) (2005) 40–47.
H. Naceur, Y. Q. Guo and S. Ben-Elechi, Response surface methodology for design of sheet forming parameters to control springback effects, Comput. Struct., 84(26–27) (2006) 1651–1663.
A. Mkaddem and D. Saidane, Experimental approach and RSM procedure on the examination of springback in wipingdie bending processes, J. Mater. Process. Technol., 189(1–3) (2007) 325–333.
R. Bahloul, S. Ben-Elechi and A. Potiron, Optimisation of springback predicted by experimental and numerical approach by using response surface methodology, J. Mater. Process. Technol., 173(1) (2006) 101–110.
D. Vasudevan, R. Srinivasan and P. Padmanabhan, Effect of process parameters on springback behaviour during air bending of electrogalvanised steel sheet, J. Zhejiang Univ.-SCIENCE A, 12(3) 2011 183–189.
K. T. Chiang, C. C. Chou and N. M. Liu, Application of response surface methodology in describing the thermal performances of a pin-fin type heat sink, Int. J. Therm. Sci., 48(6) (2009) 1196–1205.
D. C. Montgomery, Design and analysis of experiments, 4th ed., John Wiley, New York (1997).
M. Y. Noordin, V. C. Venkatesh, S. Sharif, S. Elting and A. Abdullah, Application of response surface methodology in describing the performance of coated carbide tools when turning AISI 1045 steel, J. Mater. Process. Technol., 145(1) (2004) 46–58.
L. C. Zhang, G. Lu and S. C. Leong, V-shaped sheet forming by deformable punches, J. Mater. Process. Technol., 63(1–3) (1997) 134–139.
G. A. Kumar and K. D. Ravi, Formability of galvanized interstitial-free steel sheets, J. Mater. Process. Technol., 172(2) (2006) 225–237.
N. Asnafi, Springback and fracture in v-die air bending of thick stainless steel sheets, Mater. Des., 21(3) (2000) 217–236.
M. L. Garcia-Romeu, J. Ciruana and I. Ferrer, Springback determination of sheet metals in air bending process based on an experimental work, J. Mater. Process. Technol., 191(1–3) (2007) 174–177.
J. Z. Gronostajski, Behaviour of coated steel sheets in forming processes, J. Mater. Process. Technol., 53(1–2) (1995) 167–176.
J. K. Kim and T. X. Yu, Forming and failure behaviour of coated, laminated and sandwiched sheet metals: a review, J. Mater. Process. Technol., 63(1–3) (1997) 33–42.
R. J. Mentink, D. Lutters, A. H. Streppel and H. J. J. Kals, Determining material properties of sheet metal on a press brake, J. Mater. Process. Technol., 141(1) (2003) 143–154.
L. J. De Vin, Expecting the unexpected, a must for accurate brake forming, J. Mater.Process. Technol., 117(1–2) (2001) 244–248.
M. V. Inamdar, P. P. Date and S. V. Sabnis, On the effects of geometric parameters on springback in sheets of five materials subjected to air vee bending, J. Mater. Process. Technol., 123(3) (2002) 459–463.
A. H. Streppel, D. Lutters, E. ten Brinke, H. H. Pijlman and H. J. J. Kals, Process modelling for air bending: validation by experiments and simulations, J. Mater. Process Technol., 115(1) (2001) 76–82.
M. Ramezani, Z. M. Ripin and R. Ahmad, Modelling of kinetic friction in V-bending of ultra-high-strength steel sheets, Int. J. Adv. Mfg. Technol., 46(1–4) (2010) 101–110.