Prediction of Heart Disease Using Deep Convolutional Neural Networks
Tóm tắt
Từ khóa
Tài liệu tham khảo
Ueshima, H.; et al.: Cardiovascular disease and risk factors in Asia: a selected review. Circulation 118(25), 2702–2709, 2008. https://doi.org/10.1161/CIRCULATIONAHA.108.790048.
Bewu, A.; Mbanya, J.C.: Cardiovascular Disease. In: Jamison, D.T;, Feachem, R.G.; Makgoba, M.W.; et al. editors. Disease and Mortality in Sub-Saharan Africa. 2nd edition. Washington (DC): The International Bank for Reconstruction and Development/The World Bank; 2006. Chapter 21. https://www.ncbi.nlm.nih.gov/books/NBK2294/ (2006)
Ramirez-Bautista, J.A.; Hernández-Zavala, A.; Chaparro-Cárdenas, S.L.; Huerta-Ruelas, J.A.: Review on plantar data analysis for disease diagnosis. Biocybern. Biomed. Eng. 38, 342–361, 2018
Nalluri, S.; Saraswathi, R.V.; Ramasubbareddy, S.; Govinda, K.; Swetha, E.: Chronic heart disease prediction using data mining techniques. In: Data Engineering and Communication Technology, ed: Springer, pp. 903–912 (2020)
(2017, 25 March). WHO: World Health Organization, Media Centre, cardiovascular diseases fact sheet webpage. https://www.who.int/mediacentre/factsheets/fs317/en/ (2017)
Sharma, R.; Agarwal, P.; Mahapatra, R.P.: Evolution in big data analytics on internet of things: applications and future plan. In: Multimedia Big Data Computing for IoT Applications, ed: Springer, pp. 453–477 (2020)
Gartner: The Importance of 'Big Data': A Definition. https://www.gartner.com/doc/2057415/importance-big-data-definition (2012)
Jordan, M.I.; Mitchell, T.M.: Machine learning: trends, perspectives, and prospects. Science 349, 255–260, 2015
Gupta, R.; Khari, M.; Gupta, D.; Crespo, R.G.: Fingerprint image enhancement and reconstruction using the orientation and phase reconstruction. Information Sciences (2020)
Gupta, R.; Khari, M.; Gupta, V.; Verdú, E.; Wu, X.; Herrera-Viedma, E.; González Crespo, R.: Fast single image haze removal method for inhomogeneous environment using variable scattering coefficient. Comput. Model. Eng. Sci. 123(3), 1175–1192, 2020
Khari, M.; Garg, A.K.; Crespo, R.G.; Verdú, E.: Gesture recognition of RGB and RGB-D static images using convolutional neural networks. Int. J. Interact. Multimed. Artif. Intell. 5(7) (2019)
Robinson, Y.H.; Vimal, S.; Khari, M.; Hernández, F.C.L.; Crespo, R.G.: Tree-based convolutional neural networks for object classification in segmented satellite images. Int. J. High Perform. Comput. Appl. 1094342020945026 (2020)
Dua, M.; Gupta, R.; Khari, M.; Crespo, R.G.: Biometric iris recognition using radial basis function neural network. Soft. Comput. 23(22), 11801–11815, 2019
Esteva, A.; Robicquet, A.; Ramsundar, B.; Kuleshov, V.; DePristo, M.; Chou, K.; et al.: A guide to deep learning in healthcare. Nat. Med. 25, 24–29, 2019
Rathnayakc, B.S.S.; Ganegoda, G.U.: Heart diseases prediction with data mining and neural network techniques. In: 2018 3rd International Conference for Convergence in Technology (I2CT), pp. 1–6 (2018)
Van Pham, H.: A proposal of expert system using deep learning neural networks and fuzzy rules for diagnosing heart disease. In: Frontiers in Intelligent Computing: Theory and Applications, ed: Springer, pp. 189–198 (2020)
Qrenawi, M.I.; Al Sarraj, W.: Identification of cardiovascular diseases risk factors among diabetes patients using ontological data mining techniques. In: 2018 International Conference on Promising Electronic Technologies (ICPET), pp. 129–134 (2018)
Nguyen, T.-H.; Nguyen, T.-N.; Nguyen, T.-T.: A deep learning framework for heart disease classification in an IoTs-based system. In: A Handbook of Internet of Things in Biomedical and Cyber Physical System, ed: Springer, pp. 217–244 (2020)
Isra’a Ahmed Zriqat, A.M.; Altamimi, M.A.: A comparative study for predicting heart diseases using data mining classification methods
More, K.; Raihan, M.; More, A.; Padule, S.; Mondal, S.: A12176 Smart phone based “heart attack” risk prediction; innovation of clinical and social approach for preventive cardiac health. J. Hypertens. 36, e321, 2018
Aldallal, A.; Al-Moosa, A.A.A.: Using data mining techniques to predict diabetes and heart diseases
O’Donnell, J.; Velardo, C.; Shah, S.A.; Khorshidi, G.S.; Salvi, D.; Rahimi, K.; et al.: Physical activity and sleep analysis of heart failure patients using multi-sensor patches. In: 2018 40th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), pp. 6092–6095 (2018)
Awan, S.M.; Riaz, M.U.; Khan, A.G.: Prediction of heart disease using artificial neural network. VFAST Trans. Softw. Eng. 13, 102–112, 2018
Alizadeh-dizaj, G.: Risk Prediction and Stratification of Patients with Stroke Using Data Mining Techniques. Tabriz University of Medical Sciences, School of Management and Medical Informatics (2018)
Somasundaram, T.J.P.K.: An empirical study on prediction of heart disease using classification data mining techniques, presented at the IEEE-International Conference On Advances In Engineering, Science And Management (ICAESM -2012), (2015)
Liu, Y.: Environmental Health Nexus: Designing Predictive Models for Improving Public Health Interventions (2018)
Deepika, M.; Kalaiselvi, K.: A empirical study on disease diagnosis using data mining techniques. In: 2018 Second International Conference on Inventive Communication and Computational Technologies (ICICCT), pp. 615–620 (2018)
Malav, A.; Kadam, K.: A Hybrid Approach for Heart Disease Prediction Using Artificial Neural Network and K-means
Wankhar, I.; Wriang, I.; Debnath, P.; Bordoloi, P.; Tripathi, R.; Bhatia, D.; et al.: Comparison and Performance Evaluation of ECG Classification Techniques Trained with Shorter Database, ed: IJSRST, (2018)
Ordonez, C.: Association rule discovery with the train and test approach for heart disease prediction. IEEE Trans. Inf. Technol. Biomed. 10, 334–343, 2006
Xing, Y.; Wang, J.; Zhao, Z.: Combination data mining methods with new medical data to predicting outcome of coronary heart disease. In: 2007 International Conference on Convergence Information Technology (ICCIT 2007), pp. 868–872 (2007)
Srinivas, K.; Rao, G.R.; Govardhan, A.: Analysis of coronary heart disease and prediction of heart attack in coal mining regions using data mining techniques. In: 2010 5th International Conference on Computer Science & Education, pp. 1344–1349 (2010)
Liu, J.-L.; Hsu, Y.-T.; Hung, C.-L.: Development of evolutionary data mining algorithms and their applications to cardiac disease diagnosis. IEEE Congress on Evolutionary Computation 2012, 1–8, 2012
Chandra, P.; Deekshatulu, B.: Prediction of risk score for heart disease using associative classification and hybrid feature subset selection. In: 2012 12th International Conference on Intelligent Systems Design and Applications (ISDA), pp. 628–634 (2012)
Amin, S.U.; Agarwal, K.; Beg, R.: Genetic neural network based data mining in prediction of heart disease using risk factors. In: 2013 IEEE Conference on Information & Communication Technologies, pp. 1227–1231 (2013)
Maji, S.; Arora, S.: Decision Tree Algorithms for Prediction of Heart Disease. Information and Communication Technology for Competitive Strategies, pp. 447–454. Springer, Singapore (2019)
Alim, M.A.; et al.: Robust heart disease prediction: a novel approach based on significant feature and ensemble learning model. In: 2020 3rd International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). IEEE, (2020)
Mienye, I.D.; Yanxia, S.; Zenghui, W.: Improved sparse autoencoder based artificial neural network approach for prediction of heart disease. Informatics in Medicine Unlocked, 100307 (2020)
Dwivedi, A.K.: Performance evaluation of different machine learning techniques for prediction of heart disease. Neural Comput. Appl. 29(10), 685–693, 2018
https://archive.ics.uci.edu/ml/machine-learning-databases/heart-disease/
LeCun, Y.; Bengio, Y.: Convolutional networks for images, speech, and time series. Handbook Brain Theory Neural Netw. 3361, 1995, 1995
Iandola, F.: Exploring the design space of deep convolutional neural networks at large scale, arXiv preprint arXiv:1612.06519 (2016)
Szegedy, C.; Ioffe, S.; Vanhoucke, V.; Alemi, A.A.: Inception-v4, inception-resnet and the impact of residual connections on learning. In: Thirty-First AAAI Conference on Artificial Intelligence, (2017)
He, K.; Zhang, X.; Ren, S.; Sun, J.: Deep residual learning for image recognition. In: Proceedings of the Conference on Computer Vision and Pattern Recognition, ed: IEEE (2016)
Krizhevsky, A.; Sutskever, I.; Hinton, G.E.: Imagenet classification with deep convolutional neural networks. In: Advances in neural information processing systems, pp. 1097–1105 (2012)
Radford, A.; Metz, L.; Chintala, S.: Unsupervised representation learning with deep convolutional generative adversarial networks. arXiv preprint arXiv:1511.06434 (2015)