Prediction of Cohesive Zone Length and Accurate Numerical Simulation of Delamination under Mixed-mode Loading

H. C. Chetan1, Subhaschandra Kattimani1, S. M. Murigendrappa1
1Department of Mechanical Engineering, National Institute of Technology Karnataka, Mangalore, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Wang, Y., Soutis, C.: Fatigue Behaviour of Composite T-Joints in Wind Turbine Blade Applications. Appl. Compos. Mater. 24, 461–475 (2017). https://doi.org/10.1007/s10443-016-9537-9

Suman, M.L.J., Murigendrappa, S.M., Kattimani, S.: Effect of similar and sissimilar interface layers on delamination in hybrid plain woven glass/carbon expoxy laminated compoiste double cantilever beam under model-I loading. Theor. Appl. Fract. Mech. 114, 102988 (2021). https://doi.org/10.1016/j.tafmec.2021.102988

Dugdale, D.S.: Yeilding of steel sheets contaning slits. J. Mech. Phys. Solids 8, 100–104 (1906). https://doi.org/10.1016/0022-5096(60)90013-2

Barenblatt, G.I.: The Mathematical Theory of Equilibrium Cracks in Brittle Fracture. Adv. Appl. Mech. 7, 55–129 (1962). https://doi.org/10.1016/S0065-2156(08)70121-2

Alfano, G.: On the influence of the shape of the interface law on the application of cohesive-zone models. Combust. Sci. Technol. 66, 723–730 (2006). https://doi.org/10.1016/j.compscitech.2004.12.024

Azab, M., Parry, G., Estevez, R.: An analytical model for DCB/wedge tests based on Timoshenko beam kinematics for accurate determination of cohesive zone lengths. Int. J. Fract. 222, 137–153 (2020). https://doi.org/10.1007/s10704-020-00438-2

Soto, A., González, E.V., Maimí, P., Turon, A., Sainz de Aja, J.R., de la Escalera, F.M.: Cohesive zone length of orthotropic materials undergoing delamination. Eng. Fract. Mech. 159, 174–188 (2016). https://doi.org/10.1016/j.engfracmech.2016.03.033

Esmaili, A., Fathollah Taheri-behrooz.: Effect of cohesive zone length on the delamination growth of the composite laminates under cyclic loading. Eng. Fract. Mech. 237, 107246 (2020). https://doi.org/10.1016/j.engfracmech.2020.107246

Naderi, M., Jung, J., Yang, Q.D.: A three dimensional augmented finite element for modeling arbitrary cracking in solids. Int. J. Fract. 197, 147–168 (2016). https://doi.org/10.1007/s10704-016-0072-3

Pinho, S.T., Chen, B.Y., De Carvalho, N.V., Baiz, P.M., Tay, T.E.: A floating node method for the modelling of discontinuities within a finite element. ICCM Int. Conf. Compos. Mater. 19, 516–527 (2013)

Rabczuk, T., Bordas, S., Zi, G.: On three-dimensional modelling of crack growth using partition of unity methods. Comput. Struct. 88, 1391–1411 (2010). https://doi.org/10.1016/j.compstruc.2008.08.010

Köllner, A., Kashtalyan, M., Guz, I., Völlmecke, C.: International Journal of Solids and Structures On the interaction of delamination buckling and damage growth in cross-ply laminates. 202, 912–928 (2020). https://doi.org/10.1016/j.ijsolstr.2020.05.035

Qing, L., Su, Y., Dong, M., Cheng, Y., Li, Y.: Size effect on double-K fracture parameters of concrete based on fracture extreme theory. Arch. Appl. Mech. 91, 427–442 (2021). https://doi.org/10.1007/s00419-020-01781-5

Kashtalyan M., Soutis C.: Damage mechanisms in cross-ply fiber-reinforced composite laminates. Wiley Encycl. Compos., 28–31 (2012). https://doi.org/10.1002/9781118097298.weoc064

Tijssens, M.G.A., Sluys, B.L.J., Van der Giessen, E.: Numerical simulation of quasi-brittle fracture using damaging cohesive surfaces. Eur. J. Mech. A/Solids. 19, 761–779 (2000). https://doi.org/10.1016/S0997-7538(00)00190-X

Tabiei, A., Zhang, W.: Cohesive element approach for dynamic crack propagation : Artificial compliance and mesh dependency. Eng. Fract. Mech. 180, 23–42 (2017). https://doi.org/10.1016/j.engfracmech.2017.05.009

Ponnusami, S.A., Turteltaub, S., van der Zwaag, S.: Cohesive-zone modelling of crack nucleation and propagation in particulate composites. Eng. Fract. Mech. 149, 170–190 (2015). https://doi.org/10.1016/j.engfracmech.2015.09.050

Lu, X., Chen, B.Y., Tan, V.B.C., Tay, T.E.: A 3D separable cohesive element for modelling the coupled failure in laminated composite materials. ECCM 2018 - 18th Eur. Conf. Compos. Mater. (2020)

Pham, D.C., Cui, X., Lua, J., Zhang, D.: A continuum damage description for a discrete crack modeling approach for delamination migration in composite laminates. AIAA/ASCE/AHS/ASC Struct. Struct. Dyn. Mater. Conf. 2018, 1–13 (2018). https://doi.org/10.2514/6.2018-1222

Varandas, L.F., Arteiro, A., Catalanotti, G., Falzon, B.G.: Micromechanical analysis of interlaminar crack propagation between angled plies in mode I tests. Compos. Struct. 220, 827–841 (2019). https://doi.org/10.1016/j.compstruct.2019.04.050

Bretizman, T.D., Iarve, E.V., Swindeman, M.J., Hoos, K., Mollenhauer, D.H., Hallett, S.R.: Discreet damage modeling in open hole polymer matrix composites. European Conference on Composite Material 15, 24–28 (2012)

Tomar, V., Zhai, J., Zhou, M.: Bounds for element size in a variable stiffness cohesive finite element model. Int. J. Numer. Methods Eng. 61, 1894–1920 (2004). https://doi.org/10.1002/nme.1138

Gutiérrez, M.A., De Borst, R.: Deterministic and stochastic analysis of size effects and damage evolution in quasi-brittle materials. Arch. Appl. Mech. 69, 655–676 (1999). https://doi.org/10.1007/s004190050249

Kumar, D., Roy, R., Kweon, J., Choi, J.: Numerical Modeling of Combined Matrix Cracking and Delamination in Composite Laminates Using Cohesive Elements. Appl. Compos. Mater. 397–419 (2016). https://doi.org/10.1007/s10443-015-9465-0

Shi, Y., Pinna, C., Soutis, C.: Interface Cohesive Elements to Model Matrix Crack Evolution in Composite Laminates. Applied Composite Materials 21, 57–70 (2014). https://doi.org/10.1007/s10443-013-9349-0

Cao, D., Duan, Q., Hu, H., Zhong, Y., Li, S.: Computational investigation of both intra-laminar matrix cracking and inter-laminar delamination of curved composite components with cohesive elements. Compos. Struct. 192, 300–309 (2018). https://doi.org/10.1016/j.compstruct.2018.02.072

Xu, X.P., Needleman, A.: Numerical simulations of fast crack growth in brittle solids. J. Mech. Phys. Solids. 42, 1397–1434 (1994). https://doi.org/10.1016/0022-5096(94)90003-5

Blanco, N., Turon, A., Costa, J.: An exact solution for the determination of the mode mixture in the mixed-mode bending delamination test. Composite Science and Technology 66, 1256–1258 (2006). https://doi.org/10.1016/j.compscitech.2005.10.028

Camanho, P., Davila, C.G.: Mixed-Mode Decohesion Finite Elements in for the Simulation Composite of Delamination Materials. Nasa. TM-2002–21, 1–37 (2002). https://doi.org/10.1177/002199803034505

Irwin, G.R.: Plastic zone near a crack and freacture toughness. Proceedings of seventh Sagamore Ordnance material conference 4, 63–78 (1960)

Hui, C.Y., Jagota, A., Bennison, S.J., Londono, J.D.: Crack blunting and the strength of soft elastic solids. Proc. R. Soc. A Math. Phys. Eng. Sci. 459, 1489–1516 (2003). https://doi.org/10.1098/rspa.2002.1057

Falk, M.L., Needleman, A., Rice, J.R.: A critical evaluation of cohesive zone models of dynamic fracture. J. Phys. IV JP. 11, 43–50 (2001). https://doi.org/10.1051/jp4:2001506

Hillerborg, A., Modéer, M., Petersson, P.-E.: Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements. Cem. Concr. Res. 6, 773–781 (1976). https://doi.org/10.1016/0008-8846(76)90007-7

Cox, B.N., Marshall, D.B.: Concepts for bridged cracks in fracture and fatigue. Acta Metall. Mater. 42, 341–363 (1994). https://doi.org/10.1016/0956-7151(94)90492-8

Z.P. Bažant, Planas J..: Fracture and size effect in concrete and other quasibrittle materials. Routledge (1998). https://doi.org/10.1201/9780203756799

Bazant, Z.P.: Size effect on structural strength: a review. Arch. Appl. Mech. 69, 703–725 (1999). https://doi.org/10.1007/s004190050252

Yang, Q.D., Cox, B.N., Nalla, R.K., Ritchie, R.O.: Fracture length scales in human cortical bone : The necessity of nonlinear fracture models. Biomaterials 27, 2095–2113 (2006). https://doi.org/10.1016/j.biomaterials.2005.09.040

Turon, A., Dávila, C.G., Camanho, P.P., Costa, J.: An engineering solution for mesh size effects in the simulation of delamination using cohesive zone models. Eng. Fract. Mech. 74, 1665–1682 (2007). https://doi.org/10.1016/j.engfracmech.2006.08.025

Smith, E.: The size of the fully developed softening zone associated with a crack in a strain-softening material—II. A crack in a double-cantilever-beam specimen. Int. J. Eng. Sci. 27, 309–314 (1989). https://doi.org/10.1016/0020-7225(89)90119-5

Planas, J., Elices, M.: Asymptotic analysis of a cohesive crack : 1. Theoretical background. International J. of Fracture 55, 153–177 (1992). https://doi.org/10.1007/BF00017275

Planas, J., Elices, M.: Nonlinear fracture of cohesive materials. International J. of Fracture 51, 139–157 (1991). https://doi.org/10.1007/BF00033975

Bao, G., Suo, Z.: Remarks on Crack-Bridging Concepts. Appl. Mech. Rev. 45, 355–366 (1992). https://doi.org/10.1115/1.3119764

Suo, Z., Bao, G., Fan, B.: Delamination R-curve phenomena due to damage. J. Mech. Phys. Solids. 40, 1–16 (1992). https://doi.org/10.1016/0022-5096(92)90198-B

Harper, P.W., Sun, L., Hallett, S.R.: A study on the influence of cohesive zone interface element strength parameters on mixed mode behaviour. Composites : Part A 43, 722–734 (2012). https://doi.org/10.1016/j.compositesa.2011.12.016

Williams, J.G., Hadavinia, H.: Analytical solutions for cohesive zone models. J. Mech. Phys. Solids 50, 809–825 (2002). https://doi.org/10.1016/S0022-5096(01)00095-3

Massabo, R.: Concepts for bridged Mode II delamination cracks. J. Mech. Phys. Solids. 47, 1265–1300 (1999). https://doi.org/10.1016/S0022-5096(98)00107-0

Turon, A., Costa, J., Camanho, P.P., Maim, P.: Analytical and Numerical Investigation of the Length of the Cohesive Zone in Delaminated Composite Materials. Mechanical Response of Composites 10, (2008). https://doi.org/10.1007/978-1-4020-8584-0_4

Harper, P.W., Hallett, S.R.: Cohesive zone length in numerical simulations of composite delamination. Eng. Fract. Mech. 75, 4774–4792 (2008). https://doi.org/10.1016/j.engfracmech.2008.06.004

Abaqus: Abaqus 2017– Documentation, Dassault Systèmes Simulia Corporation

ASTM D6671M: Standard Test Method for Mixed Mode I-Mode II Interlaminar Fracture Toughness of Unidirectional Fiber Reinforced Polymer Matrix Composites

Turon, A., Camanho, P.P., Costa, J., Renart, J.: Accurate simulation of delamination growth under mixed-mode loading using cohesive elements : Definition of interlaminar strengths and elastic stiffness. 92, 1857–1864 (2010). https://doi.org/10.1016/j.compstruct.2010.01.012

Lu, X., Ridha, M., Chen, B.Y., Tan, V.B.C., Tay, T.E.: On cohesive element parameters and delamination modelling. Eng. Fract. Mech. 206, 278–296 (2019). https://doi.org/10.1016/j.engfracmech.2018.12.009

Thawre, M.M., Verma, K.K., Jagannathan, N., Peshwe, D.R., Paretkar, R.K., Manjunatha, C.M.: Effect of ply-drop on fatigue life of a carbon fiber composite under a fighter aircraft spectrum load sequence. Compos. Part B Eng. 86, 120–125 (2016). https://doi.org/10.1016/j.compositesb.2015.10.002

Vidyashankar, B.R., Murty, A.V.K.: Analysis of laminates with ply drops. Composites Science and Technology 61, 749–758 (2001). https://doi.org/10.1016/S0266-3538(01)00010-0

Ratcliffe, J.G., De Carvalho, N.V.: Investigating delamination migration in composite tape laminates. Technical Memorandum NASA-TM-2014–218289, (2014)

Wimmer, G., Kitzmüller, W., Pinter, G., Wettemann, T., Pettermann, H.E.: Computational and experimental investigation of delamination in L-shaped laminated composite components. 76, 2810–2820 (2009). https://doi.org/10.1016/j.engfracmech.2009.06.007

Gözlüklü, B., Coker, D.: Modeling of the dynamic delamination of L-shaped unidirectional laminated composites. Compos. Struct. 94, 1430–1442 (2012). https://doi.org/10.1016/j.compstruct.2011.11.015

Farmand-Ashtiani, E., Alanis, D., Cugnoni, J., Botsis, J.: Delamination in cross-ply laminates: Identification of traction-separation relations and cohesive zone modeling. Compos. Sci. Technol. 119, 85–92 (2015). https://doi.org/10.1016/j.compscitech.2015.09.025

Geleta, T.N., Woo, K., Lee, B.: Delamination Behavior of L-Shaped Laminated Composites. Int. J. Aeronaut. Sp. Sci. 19, 363–374 (2018). https://doi.org/10.1007/s42405-018-0038-y

Lindgaard, E., Bak, B.L.V.: Experimental characterization of delamination in off-axis GFRP laminates during mode I loading. Compos. Struct. 220, 953–960 (2019). https://doi.org/10.1016/j.compstruct.2019.04.022

Pernice, M.F., De Carvalho, N.V., Ratcliffe, J.G., Hallett, S.R.: Experimental study on delamination migration in composite laminates. Compos. Part A Appl. Sci. Manuf. 73, 20–34 (2015). https://doi.org/10.1016/j.compositesa.2015.02.018

Arki, S., Ferrero, J.F., Marguet, S., Redonnet, J.M., Aury, A.: Strengthening of a curved composite beam by introducing a flat portion. Compos. Struct. 222, 110863 (2019). https://doi.org/10.1016/j.compstruct.2019.04.035

He, M.Y., Hutchinson, J.W.: Kinking of a Crack Out of an Interface. J. Appl. Mech. 56, 270–278 (1989). https://doi.org/10.1115/1.3176078

Needleman, A.: Continuum Model for Void Nucleation By Inclusion Debonding. J. Appl. Mech. 54, 525–531 (1987). https://doi.org/10.1115/1.3173064

Begley, M.R., Philips, N.R., Compton, B.G., Wilbrink, D.V., Ritchie, R.O., Utz, M.: Micromechanical models to guide the development of synthetic ‘brick and mortar’ composites. J. Mech. Phys. Solids. 60, 1545–1560 (2012). https://doi.org/10.1016/j.jmps.2012.03.002

Tabiei, A.: Composite Laminate Delamination Simulation and Experiment : A Review of Recent Development. Appl. Mech. Rev. 70, 1–23 (2018). https://doi.org/10.1115/1.4040448