10.1016/S1473-3099(20)30120-1
10.1007/s00134-020-05955-1
10.1007/s00134-020-05979-7
World Health Organization. Essential health services face continued disruption during COVID-19 pandemic 2022. https://www.who.int/news/item/07-02-2022-essential-health-services-face-continued-disruption-during-covid-19-pandemic.
Ritchie H, Mathieu E, Rodés-Guirao L, et al. Coronavirus Pandemic (COVID-19) 2020. https://ourworldindata.org/coronavirus accessed 07/03/2022.
10.1101/2020.03.28.20045997
10.1038/d41586-022-00155-x
10.1101/2020.03.20.20037325
Institute of Social and Preventive Medicine. Living evidence on covid-19 2020. https://ispmbern.github.io/covid-19/living-review/index.html.
Thomas J, Brunton J, Graziosi S. EPPI-Reviewer 4.0: software for research synthesis [program]. EPPI-Centre Software. London: Social Science Research Unit, Institute of Education, University of London, 2010.
10.1101/2020.03.18.20035816
10.1371/journal.pmed.1001744
10.1007/978-3-030-16399-0
10.1371/journal.pmed.1000100
10.1101/2020.02.24.20027268
10.1101/2020.02.20.20025510
10.1101/2020.02.29.20029603
10.1101/2020.02.27.20028027
10.1371/journal.pone.0230548
10.1101/2020.02.23.20026930
10.1101/2020.03.09.20032219
10.1371/journal.pone.0230548
10.1101/2020.02.25.20021568
10.1101/2020.02.29.20029603
10.1101/2020.02.27.20028027
10.1101/2020.02.14.20023028
10.1101/2020.03.05.20031906
10.1101/2020.03.09.20032219
Gozes O, Frid-Adar M, Greenspan H, et al. Rapid AI development cycle for the coronavirus (covid-19) pandemic: initial results for automated detection & patient monitoring using deep learning CT image analysis. arXiv e-prints [Preprint] 2020. https://ui.adsabs.harvard.edu/abs/2020arXiv200305037G
10.1101/2020.03.19.20039354
Xu X, Jiang X, Ma C, et al. Deep learning system to screen coronavirus disease 2019 pneumonia. arXiv e-prints [Preprint] 2020. https://ui.adsabs.harvard.edu/abs/2020arXiv200209334X
Shan F, Gao Y, Wang J, et al. Lung infection quantification of covid-19 in CT images with deep learning. arXiv e-prints 2020. https://ui.adsabs.harvard.edu/abs/2020arXiv200304655S
10.1148/radiol.2020200905
10.1186/s13054-020-2833-7
Barstugan M, Ozkaya U, Ozturk S. Coronavirus (covid-19) classification using CT images by machine learning methods. arXiv e-prints [Preprint] 2020. https://ui.adsabs.harvard.edu/abs/2020arXiv200309424B
10.1186/s13054-020-2833-7
10.1101/2020.03.13.990242
Shi F, Xia L, Shan F, et al. Large-scale screening of covid-19 from community acquired pneumonia using infection size-aware classification. arXiv [Preprint] 2020. https://arxiv.org/abs/2003.09860
10.1186/s13054-020-2833-7
Chowdhury MEH, Rahman T, Khandakar A, et al. Can AI help in screening Viral and covid-19 pneumonia? arXiv e-prints [Preprint] 2020. https://ui.adsabs.harvard.edu/abs/2020arXiv200313145C.
10.1007/978-0-387-77244-8
10.1161/CIRCULATIONAHA.115.017719
10.1371/journal.pmed.1001886
10.1016/j.jclinepi.2015.04.005
10.1186/s41512-019-0046-9
10.1016/S0140-6736(20)30566-3
10.1097/RLI.0000000000000672
10.1007/s00392-020-01626-9
Chaganti S, Balachandran A, Chabin G, et al. Quantification of tomographic patterns associated with covid-19 from chest CT. arXiv e-prints [Preprint] 2020. https://ui.adsabs.harvard.edu/abs/2020arXiv200401279C.
10.1016/j.tmaid.2020.101623
Gozes O, Frid-Adar M, Sagie N, et al. Coronavirus detection and analysis on chest CT with deep learning. arXiv e-prints [Preprint] 2020. https://ui.adsabs.harvard.edu/abs/2020arXiv200402640G.
Imran A, Posokhova I, Qureshi HN, et al. AI4covid-19: AI enabled preliminary diagnosis for covid-19 from cough samples via an app. arXiv e-prints [Preprint] 2020. https://ui.adsabs.harvard.edu/abs/2020arXiv200401275I.
10.1038/d41586-020-00613-4
Li X, Li C, Zhu D. covid-MobileXpert: on-device covid-19 screening using snapshots of chest x-ray. arXiv e-prints [Preprint] 2020. https://ui.adsabs.harvard.edu/abs/2020arXiv200403042L.
10.1101/2020.03.30.20047787
Tang Z, Zhao W, Xie X, et al. Severity assessment of coronavirus disease 2019 (covid-19) using quantitative features from chest CT images. arXiv e-prints [Preprint] 2020. https://ui.adsabs.harvard.edu/abs/2020arXiv200311988T.
Zhang J, Xie Y, Li Y, et al. covid-19 Screening on Chest X-ray Images Using Deep Learning based Anomaly Detection. arXiv e-prints 2020. https://ui.adsabs.harvard.edu/abs/2020arXiv200312338Z.
10.1101/2020.03.24.20043117
10.1148/radiol.2020201491
10.1101/2020.04.23.20076976
10.1101/2020.03.25.20043166
Arpan M, Surya K, Harish R, et al. CovidAID: covid-19 Detection Using Chest X-Ray. ArXiv e-prints [Preprint] 2020
10.1161/CIRCULATIONAHA.115.017719
Bassi PRAS, Attux R. A deep convolutional neural network for covid-19 detection using chest x-rays. ArXiv e-prints [Preprint] 2020
10.1016/j.jclinepi.2015.04.005
10.1186/s41512-019-0046-9
10.1016/S0140-6736(20)30566-3
Born J, Brandle G, Cossio M, et al. Pocovid-Net: Automatic detection of covid-19 from a new lung ultrasound imaging dataset (POCUS). ArXiv e-prints [Preprint] 2020.
10.1007/s00392-020-01626-9
10.1101/2020.04.05.20047944
10.1016/j.tmaid.2020.101623
10.1016/j.cca.2020.03.022
10.1101/2020.04.13.20064329
10.1038/d41586-020-00613-4
10.1016/s1473-3099(20)30119-5
10.1101/2020.04.27.20081984
10.1101/2020.04.21.20063263
10.1101/2020.04.20.20067512
Jiang Z, Hu M, Fan L, et al. Combining visible light and infrared imaging for efficient detection of respiratory infections such as covid-19 on portable device. ArXiv e-prints [Preprint] 2020.
10.1101/2020.04.17.20070219
Rezaul KM, Döhmen T, Rebholz-Schuhmann D, et al. DeepcovidExplainer: explainable covid-19 predictions based on chest x-ray images. ArXiv e-prints [Preprint] 2020.
10.1097/RLI.0000000000000689
10.1101/2020.04.16.20068411
10.1101/2020.04.12.20062661
10.1101/2020.04.05.20048421
10.1038/s41591-020-0931-3
10.1016/j.compbiomed.2020.103792
10.1097/RLI.0000000000000689
10.1101/2020.04.11.20054643
10.1007/s10096-020-03901-z
10.1101/2020.04.24.20079012
Moutounet-Cartan PGB. Deep convolutional neural networks to diagnose covid-19 and other pneumonia diseases from posteroanterior chest x-rays. ArXiv e-prints [Preprint] 2020
10.1101/2020.04.28.20081687
10.1016/j.mehy.2020.109761
10.1101/2020.04.26.20073411
10.1101/2020.04.15.20066860
10.1101/2020.04.09.20058594
10.1101/2020.04.15.20066860
10.1101/2020.04.28.20082222
10.1101/2020.04.18.20071019
10.1016/j.ijid.2020.04.041
10.1016/j.ijid.2020.04.041
Wu Y-H, Gao S-H, Mei J, et al. JCS: an explainable covid-19 diagnosis system by joint classification and segmentation. ArXiv e-prints [Preprint] 2020.
10.1007/s40846-020-00529-4
10.1016/j.compbiomed.2020.103795
10.1080/09537104.2020.1760230
10.1016/j.ijid.2020.05.021
10.1080/07391102.2020.1767212
10.1097/RTI.0000000000000544
10.1016/j.jinf.2020.05.064
10.1016/j.jclinepi.2004.06.017
10.1161/CIRCULATIONAHA.115.017719
10.1186/s12916-019-1466-7
10.1371/journal.pmed.1001886
10.1016/j.jclinepi.2015.04.005
10.1186/s41512-019-0046-9
10.1016/S0140-6736(20)30566-3
10.1097/RLI.0000000000000672
10.1007/s00392-020-01626-9
10.7883/yoken.JJID.2020.194
10.1016/j.tmaid.2020.101623
10.1016/j.cca.2020.03.022
10.1038/d41586-020-00613-4
10.1016/s1473-3099(20)30119-5
10.1016/j.ijid.2020.04.078
10.1186/s41747-020-00167-0
10.1148/radiol.2020201874
10.1007/s00259-020-04929-1
10.1016/j.jcv.2020.104431
10.1016/j.chemolab.2020.104054
10.1007/s00264-020-04609-7
10.1016/j.jaip.2020.06.013
10.1016/j.tmaid.2020.101782
10.1016/j.ejrad.2020.109041
10.1016/j.jaci.2020.04.027
10.1016/j.amepre.2020.05.002
10.1016/j.cell.2020.04.045
10.1371/journal.pone.0233328
10.1097/CCM.0000000000004411
10.1016/j.cell.2020.04.045
10.1183/13993003.00775-2020
10.1016/j.jclinepi.2004.06.017
10.1101/2020.04.22.20075416
10.1161/CIRCULATIONAHA.115.017719
10.1097/CCE.0000000000000253
10.1186/s12916-019-1466-7
10.1371/journal.pmed.1001886
10.1016/j.jclinepi.2015.04.005
10.1186/s41512-019-0046-9
10.1007/s11606-021-06626-7
10.1183/13993003.01494-2020
10.1016/j.archger.2020.104240
10.1371/journal.pone.0243262
10.1136/bmjopen-2020-041983
10.1038/s41379-020-00700-x
10.1136/bmjresp-2020-000729
10.1016/j.compbiomed.2020.103949
10.1186/s12931-020-01511-z
10.1016/j.amjcard.2020.08.040
10.1016/j.media.2020.101844
10.1016/j.ijantimicag.2020.106110
10.1186/s12985-021-01502-6
10.1371/journal.pone.0242953
10.1016/j.hrtlng.2021.01.006
10.1016/j.resuscitation.2020.08.124
10.3389/fpubh.2020.574915
10.26355/eurrev_202010_23250
10.1016/j.jhep.2020.12.012
10.26355/eurrev_202010_23249
10.1016/j.bja.2020.11.034
10.1016/j.thromres.2020.09.017
10.1038/s41598-020-79470-0
10.1371/journal.pone.0244629
10.1007/s11739-020-02594-8
10.1007/s00330-020-07622-x
10.1183/13993003.02113-2020
10.1038/s41467-020-18786-x
10.1038/s41598-021-82885-y
10.1371/journal.pone.0239172
10.21203/rs.3.rs-126892/v1
10.1007/s11739-020-02480-3
10.1136/bmjopen-2020-040729
10.1038/s41467-020-18684-2
10.23736/S0026-4806.20.07074-3
10.1371/journal.pone.0245840
10.1080/07853890.2020.1868564
10.1038/s41598-020-75651-z
10.1038/s41598-020-78505-w
10.1016/S2213-2600(20)30559-2
10.1183/13993003.03498-2020
10.1016/j.annemergmed.2020.07.022
10.1371/journal.pone.0239536
10.1080/07853890.2020.1828616
10.1007/s00261-020-02823-w
10.1186/s40560-021-00527-x
10.1016/j.resplu.2020.100042
10.1016/j.nut.2020.111123
10.1038/s41598-020-75629-x
10.1016/j.jiac.2020.10.013
10.5005/jp-journals-10071-23683
10.1080/1354750X.2020.1841296
10.3346/jkms.2020.35.e234
10.1371/journal.pone.0237419
10.1038/s41598-021-81844-x
10.1016/j.meegid.2021.104737
10.1097/CCE.0000000000000300
10.1371/journal.pone.0241825
10.1016/j.amjmed.2020.10.044
10.1016/j.cmpb.2021.105951
10.1016/j.jiac.2020.12.009
10.1016/j.resuscitation.2020.10.039
10.1016/j.jaci.2020.07.009
10.1038/s41467-020-20657-4
10.1007/s11606-020-06353-5
10.1186/s12879-020-05688-y
10.1007/s00521-020-05592-1
10.3389/fpubh.2020.587937
10.1186/s12879-020-05561-y
10.1038/s41467-020-17280-8
10.1097/CCM.0000000000004549
10.1016/j.medj.2020.12.013
10.1038/s41598-021-81732-4
10.1016/S2589-7500(20)30316-2
10.1016/j.ajem.2020.07.019
10.1016/j.medin.2020.10.003
10.1007/s10875-020-00821-7
10.1016/j.micpath.2020.104706
10.1186/s12879-020-05614-2
10.1371/journal.pone.0245281
10.1016/j.ebiom.2020.103026
10.1136/bmjopen-2020-044028
10.1038/s41598-020-78870-6
10.1007/s42979-020-00216-w
10.1186/s13049-020-00764-3
10.1016/j.ijid.2020.10.003
10.1016/j.patter.2020.100074
10.1080/07853890.2020.1803499
10.1101/2020.09.14.20194670
10.1038/s41551-020-00633-5
10.1007/s11739-020-02543-5
10.1136/bmjspcare-2020-002602
10.1016/j.csbj.2021.01.042
10.1097/MD.0000000000021700
10.1038/s41746-020-00343-x
10.1038/s41598-020-78392-1
10.1371/journal.pone.0244627
10.1016/j.ijid.2020.11.003
10.1016/j.amjcard.2020.09.029
10.1016/j.ajem.2020.09.017
10.1016/j.amsu.2020.09.044
10.1007/s00330-020-07623-w
10.1007/s10096-020-04145-7
10.1148/radiol.2020202723
10.1186/s12967-021-02720-w
10.12688/f1000research.26723.1
10.1016/j.eclinm.2020.100426
10.1016/j.ajem.2020.10.068
10.1016/j.chest.2020.12.009
10.1016/j.medj.2020.10.002
10.1007/s00432-020-03420-6
10.1186/s12911-020-01359-9
10.1016/j.athoracsur.2020.12.050
10.1186/s40246-020-00288-y
10.1186/s12911-020-01338-0
10.1136/bmjopen-2020-045141
van de Sande, 2020, Predicting thromboembolic complications in COVID-19 ICU patients using machine learning, J Clin Transl Res, 6, 179
10.1136/emermed-2020-210199
10.7883/yoken.JJID.2020.227
10.1186/s12967-020-02655-8
10.1186/s12967-020-02505-7
10.1016/j.ijmedinf.2020.104258
10.1371/journal.pone.0240346
10.1183/13993003.01104-2020
10.1038/s41598-020-71114-7
10.1016/j.cca.2020.11.019
10.1016/j.ebiom.2020.102880
10.1016/j.eng.2020.05.014
10.1016/j.intimp.2020.107065
10.1016/S2589-7500(20)30217-X
10.1186/s12880-020-00513-z
10.1016/j.eng.2020.10.013
10.1186/s13054-020-03123-x
Zhao, 2020, A disease progression prediction model and nervous system symptoms in coronavirus disease 2019 patients, Am J Transl Res, 12, 8192
10.1371/journal.pone.0236618
10.1016/j.patter.2020.100092
10.1080/03007995.2020.1825365
10.1186/s13049-020-00795-w
The Royal College of Physicians . National Early Warning Score (NEWS) 2: Standardising the assessment of acute-illness severity in the NHS. Updated report of a working party. RCP, 2017.
10.1101/2020.04.24.20078006
Unit CCT. TACTIC: Cambridge Clinical Trials Unit; 2020. https://cctu.org.uk/portfolio/COVID-19/TACTIC.
10.1111/j.1365-2796.2004.01321.x
10.1177/09622802211007522
10.1016/j.jmpt.2012.07.002
10.1016/j.jclinepi.2015.04.005
10.1186/s12916-019-1466-7
10.1161/CIRCULATIONAHA.115.017719
10.1371/journal.pmed.1001886
10.1186/s41512-019-0046-9
Infervision. Infervision launches hashtag#AI-based hashtag#Covid-19 solution in Europe 2020. https://www.linkedin.com/posts/infervision_ai-covid-medicine-activity-6650772755031613440-TqLJ.
Offord C. Surgisphere fallout hits African nonprotfits covid-19 efforts 2020. The Scientist. https://www.the-scientist.com/news-opinion/surgisphere-fallout-hits-african-nonprofits-covid-19-efforts--67617.
10.1016/S2589-7500(21)00080-7
10.1136/thoraxjnl-2021-217580
10.1371/journal.pone.0255748
10.1016/j.jclinepi.2004.06.017
10.1183/13993003.01494-2020