Predicting tick-borne encephalitis using Google Trends
Tài liệu tham khảo
Alicino, 2015, Assessing ebola-related web search behaviour: insights and implications from an analytical study of Google Trends-based query volumes, Infect. Dis. Poverty, 4, 54, 10.1186/s40249-015-0090-9
Althouse, 2011, Prediction of dengue incidence using search query surveillance, PLoS Negl. Trop. Dis., 5, e1258, 10.1371/journal.pntd.0001258
Beauté, 2018, Tick-borne encephalitis in Europe, 2012 to 2016, Euro Surveill. Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull., 23
Bogdziewicz, 2016, Oak acorn crop and Google search volume predict lyme disease risk in temperate Europe, Basic Appl. Ecol., 17, 300, 10.1016/j.baae.2016.01.002
Bogovic, 2015, Tick-borne encephalitis: a review of epidemiology, clinical characteristics, and management, World J. Clin. Cases, 3, 430, 10.12998/wjcc.v3.i5.430
Butler, 2013, When Google got flu wrong, Nature, 494, 155, 10.1038/494155a
Cook, 2011, Assessing Google Flu Trends performance in the United States during the 2009 influenza virus A (H1N1) pandemic, PLoS One, 6, 10.1371/journal.pone.0023610
Daniel, 2018, Increased relative risk of tick-borne encephalitis in warmer weather, Front. Cell. Infect. Microbiol., 8, 90, 10.3389/fcimb.2018.00090
Dekker, 2019, Emergence of tick-borne encephalitis (TBE) in the Netherlands, Ticks Tick-Borne Dis., 10, 176, 10.1016/j.ttbdis.2018.10.008
Diebold, 2002, Comparing predictive accuracy, J. Bus. Econ. Stat., 20, 134, 10.1198/073500102753410444
Gluskin, 2014, Evaluation of internet-based dengue query data: google Dengue Trends, PLoS Negl. Trop. Dis., 8, e2713, 10.1371/journal.pntd.0002713
Godfrey, 2011, Economic downturn results in tick-borne disease upsurge, Parasit. Vectors, 4, 35, 10.1186/1756-3305-4-35
Grard, 2007, Genetic characterization of tick-borne flaviviruses: new insights into evolution, pathogenetic determinants and taxonomy, Virology, 361, 80, 10.1016/j.virol.2006.09.015
Hyndman, 2019
Hyndman, 2008, Automatic time series forecasting: the forecast package for R, J. Stat. Softw., 27, 10.18637/jss.v027.i03
Jaenson, 2018, The importance of wildlife in the ecology and epidemiology of the TBE virus in Sweden: incidence of human TBE correlates with abundance of deer and hares, Parasit. Vectors, 11, 477, 10.1186/s13071-018-3057-4
Kapitány-Fövény, 2019, Can Google Trends data improve forecasting of lyme disease incidence?, Zoonoses Public Health, 66, 101, 10.1111/zph.12539
Lazer, 2014, The parable of Google Flu: Traps in big data analysis, Science, 343, 1203, 10.1126/science.1248506
Lindquist, 2008, Tick-borne encephalitis, Lancet, 371, 1861, 10.1016/S0140-6736(08)60800-4
Mansfield, 2009, Tick-borne encephalitis virus - a review of an emerging zoonosis, J. Gen. Virol., 90, 1781, 10.1099/vir.0.011437-0
The R Core Team, 2017
Randolph, 2010, Human activities predominate in determining changing incidence of tick-borne encephalitis in Europe, Euro Surveill. Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull., 15, 24
Robert Koch Institut, 2019
Simmonds, 2017, ICTV virus taxonomy profile: Flaviviridae, J. Gen. Virol., 98, 2, 10.1099/jgv.0.000672
Sumilo, 2008, Socio-economic factors in the differential upsurge of tick-borne encephalitis in Central and Eastern Europe, Rev. Med. Virol., 18, 81, 10.1002/rmv.566
Süss, 2008, Tick-borne encephalitis in Europe and beyond--the epidemiological situation as of 2007, Euro Surveill. Bull. Eur. Sur Mal. Transm. Eur. Commun. Dis. Bull., 13
Süss, 2011, Tick-borne encephalitis 2010: epidemiology, risk areas, and virus strains in Europe and Asia—an overview, Ticks Tick-Borne Dis., 2, 2, 10.1016/j.ttbdis.2010.10.007
Teng, 2017, Dynamic forecasting of zika epidemics using Google Trends, PLoS One, 12, 10.1371/journal.pone.0165085
Walker, 2018, Can Google be used to study parasitic disease? Internet searching on tick-borne encephalitis in Germany, J. Vector Borne Dis., 55, 327, 10.4103/0972-9062.256571
Zhang, 2000, An application of the inverse hyperbolic sine transformation—a note, Health Serv. Outcomes Res. Methodol., 1, 165, 10.1023/A:1012593022758