Predicting thermodynamic stability of magnesium alloys in machine learning

Computational Materials Science - Tập 223 - Trang 112111 - 2023
Xi He, Jinde Liu, Chen Yang, Gang Jiang

Tài liệu tham khảo

Injadat, 2021, Machine learning towards intelligent systems: applications, challenges, and opportunities, Artif. Intell. Rev., 54, 3299, 10.1007/s10462-020-09948-w Song, 2020, Machine learning in materials design: algorithm and application, Chin. Phys. B, 29, 10.1088/1674-1056/abc0e3 Yang, 2020, Machine learning in catalysis, from proposal to practicing, ACS Omega, 5, 83, 10.1021/acsomega.9b03673 Oviedo, 2019, Fast and interpretable classification of small X-ray diffraction datasets using data augmentation and deep neural networks, NPJ Comput. Mater., 5, 60, 10.1038/s41524-019-0196-x Podryabinkin, 2019, Accelerating crystal structure prediction by machine-learning interatomic potentials with active learning, Phys. Rev. B, 99, 10.1103/PhysRevB.99.064114 Ziletti, 2018, Insightful classification of crystal structures using deep learning, Nat. Commun., 9, 2775, 10.1038/s41467-018-05169-6 Coley, 2019, A robotic platform for flow synthesis of organic compounds informed by AI planning, Science, 365, 557, 10.1126/science.aax1566 Frey, 2019, Prediction of synthesis of 2D metal carbides and nitrides (MXenes) and their precursors with positive and unlabeled machine learning, ACS Nano, 13, 3031, 10.1021/acsnano.8b08014 Segler, 2018, Planning chemical syntheses with deep neural networks and symbolic AI, Nature, 555, 604, 10.1038/nature25978 Vasudevan, 2018, Mapping mesoscopic phase evolution during E-beam induced transformations via deep learning of atomically resolved images, NPJ Comput. Mater., 4, 30, 10.1038/s41524-018-0086-7 Ghosh, 2019, Deep learning spectroscopy: neural networks for molecular excitation spectra, Adv. Sci. (Weinh), 6, 1801367, 10.1002/advs.201801367 Maksov, 2019, Deep learning analysis of defect and phase evolution during electron beam-induced transformations in WS2, NPJ Comput. Mater., 5, 12, 10.1038/s41524-019-0152-9 Stanev, 2018, Machine learning modeling of superconducting critical temperature, NPJ Comput. Mater., 4, 29, 10.1038/s41524-018-0085-8 Ye, 2018, Deep neural networks for accurate predictions of crystal stability, Nat. Commun., 9, 3800, 10.1038/s41467-018-06322-x Shen, 2019, Phase-field modeling and machine learning of electric-thermal-mechanical breakdown of polymer-based dielectrics, Nat. Commun., 10, 1843, 10.1038/s41467-019-09874-8 Ng, 2020, Predicting the state of charge and health of batteries using data-driven machine learning, Nat. Mach. Intell., 2, 161, 10.1038/s42256-020-0156-7 Cao, 2018, How to optimize materials and devices via design of experiments and machine learning: demonstration using organic photovoltaics, ACS Nano, 12, 7434, 10.1021/acsnano.8b04726 Kudyshev, 2020, Machine learning–assisted global optimization of photonic devices, Nanophotonics, 10, 371, 10.1515/nanoph-2020-0376 Pilania, 2016, Machine learning bandgaps of double perovskites, Sci. Rep., 6, 19375, 10.1038/srep19375 Matsumoto, 2019, An acceleration search method of higher T c superconductors by a machine learning algorithm, Appl. Phys. Exp., 12, 10.7567/1882-0786/ab2922 van Roekeghem, 2016, High-throughput computation of thermal conductivity of high-temperature solid phases: the case of oxide and fluoride perovskites, Phys. Rev. X, 6 M.R. G. Montavon, V. Gobre, A. V. Mayagoitia, K. Hansen,, K.R.M.a.O.A.V.L. A. Tkatchenko, Machine learning of molecular electronic properties in chemical compound space, New J. Phys. 15 (2013) 095003. V.C.N. H. C. Dam, T. L. Pham, A. T. Nguyen,, T.M. K. Terakura, and H. Kino, Important descriptors and descriptor groups of curie temperatures of rare-earth transition-metal binary alloys, J. Phys. Soc. Jpn. 87 (2018) 113801. Tang, 2020, Machine learning-guided synthesis of advanced inorganic materials, Mater. Today, 41, 72, 10.1016/j.mattod.2020.06.010 Schütt, 2014, How to represent crystal structures for machine learning: Towards fast prediction of electronic properties, Phys. Rev. B, 89, 10.1103/PhysRevB.89.205118 Armiento, 2014, High-throughput screening of perovskite alloys for piezoelectric performance and thermodynamic stability, Phys. Rev. B, 89, 10.1103/PhysRevB.89.134103 Balachandran, 2018, Experimental search for high-temperature ferroelectric perovskites guided by two-step machine learning, Nat. Commun., 9, 1668, 10.1038/s41467-018-03821-9 L.P. J. Schmidt, C. Verdozzi, S. Botti, M.A.L. Marques, Crystal graph attention networks for the prediction of stable materials, Sci. Adv. 7 7948. Li, 2018, Predicting the thermodynamic stability of perovskite oxides using machine learning models, Comp. Mater. Sci., 150, 454, 10.1016/j.commatsci.2018.04.033 Li, 2019, Thermodynamic stability landscape of halide double perovskites via high-throughput computing and machine learning, Adva. Funct. Mater., 29, 1807280, 10.1002/adfm.201807280 Talapatra, 2021, A machine learning approach for the prediction of formability and thermodynamic stability of single and double perovskite oxides, Chem. Mater., 33, 845, 10.1021/acs.chemmater.0c03402 Shetty, 2022, Predicting the thermodynamic stability of perovskite oxides using multiple machine learning techniques, Mater. Today: Proc., 52, 457 Faber, 2016, Machine learning energies of 2 million elpasolite (ABC_{2}D_{6}) crystals, Phys. Rev. Lett., 117, 10.1103/PhysRevLett.117.135502 Schleder, 2020, Exploring two-dimensional materials thermodynamic stability via machine learning, ACS Appl Mater Interf., 12, 20149, 10.1021/acsami.9b14530 Mukhamedov, 2021, Machine learning prediction of thermodynamic and mechanical properties of multicomponent Fe-Cr-based alloys, Phys. Rev. Mater., 5 Witman, 2021, Data-driven discovery and synthesis of high entropy alloy hydrides with targeted thermodynamic stability, Chem. Mater., 33, 4067, 10.1021/acs.chemmater.1c00647 Meredig, 2014, Combinatorial screening for new materials in unconstrained composition space with machine learning, Phys. Rev. B, 89, 10.1103/PhysRevB.89.094104 Joost, 2017, Towards magnesium alloys for high-volume automotive applications, Scr. Mater, 128, 107, 10.1016/j.scriptamat.2016.07.035 Ramalingam, 2019, Research and development in magnesium alloys for industrial and biomedical applications: a review, Met. Mater. Int., 26, 409, 10.1007/s12540-019-00346-8 Tan, 2021, Advances in LDH coatings on Mg alloys for biomedical applications: a corrosion perspective, Appl. Clay Sci., 202, 10.1016/j.clay.2020.105948 Adetunla, 2018, Influence of reinforcements in friction stir processed magnesium alloys: insight in medical applications, Mater. Res. Exp., 6, 25406, 10.1088/2053-1591/aaeea8 Esmaily, 2017, Fundamentals and advances in magnesium alloy corrosion, Prog. Mater. Sci., 89, 92, 10.1016/j.pmatsci.2017.04.011 Alharbi, 2018, Experimental and numerical study of texture evolution and anisotropic plastic deformation of pure magnesium under various strain paths, Adv. Mater. Sci. Eng., 2018, 1, 10.1155/2018/2867281 Woo, 2022, Effect of Al addition on corrosion behavior of high-purity Mg in terms of processing history, J. Magnes. Alloy, 10.1016/j.jma.2022.12.005 Sahu, 1997, Electronic structure and bonding of ultralight LiMg, Mater. Sci. Eng. B. Solid. State. Mater. Adv. Technol., 49, 74, 10.1016/S0921-5107(97)00068-8 Jin, 2013, Formation of long-period stacking ordered structures in Mg88M5Y7 (M=Ti, Ni and Pb) casting alloys, J. Alloy. Compd., 568, 21, 10.1016/j.jallcom.2013.03.061 Liu, 2015, Stability and formation of long period stacking order structure in Mg-based ternary alloys, Comp. Mater. Sci., 103, 90, 10.1016/j.commatsci.2015.03.008 Liang, 2019, Potential high-Tc superconductivity in CaYH12 under pressure, Phys. Rev. B, 99, 100505 (R), 10.1103/PhysRevB.99.100505 Nagai, 2011, Modified Cp criterion for optimizing ridge and smooth parameters in the MGR estimator for the nonparametric GMANOVA model, Open J. Stat., 01, 1, 10.4236/ojs.2011.11001 Zhang, 2018, Adaptive coupling of a deep neural network potential to a classical force field, J. Chem. Phys., 149, 10.1063/1.5042714 Arthur, 1970, Ridge regression: biased estimation for nonorthogonal problems, Technometrics, 12, 55, 10.1080/00401706.1970.10488634 T. Kotsilieris, I. Anagnostopoulos, I.E. Livieris, Special Issue: regularization techniques for machine learning and their applications, Electronics 11 (2022) 521. Schölkopf, 1998, Nonlinear component analysis as a kernel eigenvalue problem, Neural Comput., 10, 1299, 10.1162/089976698300017467 Zhang, 2018, Deep potential molecular dynamics: a scalable model with the accuracy of quantum mechanics, Phys. Rev. Lett., 120, 10.1103/PhysRevLett.120.143001 Montavon, 2018, Methods for interpreting and understanding deep neural networks, Digital Signal Process., 73, 1, 10.1016/j.dsp.2017.10.011 Wang, 2018, Crystal structure, energetics, and phase stability of strengthening precipitates in Mg alloys: a first-principles study, Acta Mater., 158, 65, 10.1016/j.actamat.2018.07.041 Faber, 2015, Crystal structure representations for machine learning models of formation energies, Int. J. Quant. Chem., 115, 1094, 10.1002/qua.24917 Rupp, 2012, Fast and accurate modeling of molecular atomization energies with machine learning, Phys. Rev. Lett., 108, 10.1103/PhysRevLett.108.058301 Ewald, 1921, Calculation of options and potential for improvement, Ann. Phys., 369, 253, 10.1002/andp.19213690304 Toukmaji, 1996, Ewald summation techniques in perspective: a survey, Comput. Phys. Commun., 95, 73, 10.1016/0010-4655(96)00016-1 Martin, 2008, 34 Kresse, 1994, Ab initio molecular-dynamics simulation of the liquid-metal-amorphous-semiconductor transition in germanium, Phys. Rev. B Condens. Matter, 49, 14251, 10.1103/PhysRevB.49.14251 Kresse, 1996, Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set, Phyis. Rev. B, 54, 11169, 10.1103/PhysRevB.54.11169 DScribe: Opensource Scientific Tools for Python, Aalto University. Wang, 2018, A deep learning package for many-body potential energy representation and molecular dynamics, Comput. Phys. Commun., 228, 178, 10.1016/j.cpc.2018.03.016 Ward, 2017, Including crystal structure attributes in machine learning models of formation energies via Voronoi tessellations, Phys. Rev. B, 96, 10.1103/PhysRevB.96.024104 Lei, 2020, Application of machine learning in material property prediction, Adv. Cond. Matter Phys., 09, 11, 10.12677/CMP.2020.92002