Predicting thermal loading in NC milling processes

Production Engineering - Tập 9 - Trang 179-186 - 2014
Matthias Schweinoch1, Raffael Joliet1, Petra Kersting1
1Institute of Machining Technology, TU Dortmund University, Dortmund, Germany

Tóm tắt

In dry NC milling, a significant amount of heat is introduced into the workpiece due to friction and material deformation in the shear zone. Time-varying contact conditions, relative tool–workpiece movement and continuous geometric change of the workpiece due to material removal lead to a perpetually changing inhomogeneous temperature distribution within the workpiece. This in turn subjects the workpiece to ongoing complex thermomechanical deformations. Machining such a thermally loaded and deformed workpiece to exact specifications may result in unacceptable shape deviations and thermal errors, which become evident only after dissipation of the introduced heat. This paper presents a hybrid simulation system consisting of a geometric multiscale milling simulation and a finite element method kernel for solving problems of linear thermoelasticity. By combination and back-coupling, the described system is capable of accurately modeling heat input, thermal dispersion, transient thermomechanical deformation and resulting thermal errors as they occur in NC milling processes. A prerequisite to accurately predicting thermomechanical errors is the correct simulation of the temperature field within the workpiece during the milling process. Therefore, this paper is subjected to the precise prediction of the transient temperature distribution inside the workpiece.

Tài liệu tham khảo

Arrazola P, Özel T, Umbrello D, Davies M, Jawahir I (2013) Recent advances in modelling of metal machining processes. CIRP Ann Manuf Technol. doi:10.1016/j.cirp.2013.05.006 Bargmann S, Steinmann P (2006) Theoretical and computational aspects of non-classical thermoelasticity. Comput Methods Appl Mech Eng. doi:10.1016/j.cma.2006.05.010 Davies M, Ueda T, M’Saoubi R, Mullany B, Cooke A (2007) On the measurement of temperature in material removal processes. CIRP Ann Manuf Technol. doi:10.1016/j.cirp.2007.10.009 Denkena B, Böß V (2009) Technological NC simulation for grinding and cutting processes using cuts. In: Proceedings of the 12th CIRP conference on modeling of machining operations Gulpak M, Sölter J, Brinksmeier E (2013) Prediction of shape deviations in face milling of steel. Procedia CIRP. doi:10.1016/j.procir.2013.06.058 Haupt P (2002) Continuum mechanics and theory of materials. Transl. from German by Joan A. Kurth., 2nd edn. Springer, Berlin Heisel U, Storchak M, Krivoruchko D (2013) Thermal effects in orthogonal cutting. Prod Eng. doi:10.1007/s11740-013-0451-9 Hetnarski RB, Ignaczak J (2000) Nonclassical dynamical thermoelasticity. Int J Solids Struct 37(1–2):215–224 Joliet R, Byfut A, Kersting P, Schröder A, Zabel A (2013) Validation of a heat input model for the prediction of thermomechanical deformations during NC milling. In: 14th CIRP conference on modeling of machining operations (CIRP CMMO). doi:10.1016/j.procir.2013.06.124 Joliet R, Byfut A, Surmann T, Schröder A (2013) Incremental generation of hierarchical meshes for the thermomechanical simulation of NC-milling processes. In: Eighth CIRP conference on intelligent computation in manufacturing engineering. doi:10.1016/j.procir.2013.09.006 Kienzle O (1952) Die Bestimmung von Kräften und Leistungen an spanenden Werkzeugen und Werkzeugmaschinen. VDI-Z 94 Odendahl S, Joliet R, Ungemach E, Zabel A, Kersting P, Biermann D (2014) Simulation of the NC milling process for the prediction and prevention of chatter. In: Denkena B (ed) New production technologies in aerospace industry, lecture notes in production engineering. Springer International Publishing, pp 19–25. doi:10.1007/978-3-319-01964-2_3 Odendahl S, Kersting P (2013) Higher efficiency modeling of surface location errors by using a multi-scale milling simulation. Procedia CIRP. doi:10.1016/j.procir.2013.06.161 Rai JK, Xirouchakis P (2008) FEM-based prediction of workpiece transient temperature distribution and deformations during milling. Int J Adv Manuf Technol. doi:10.1007/s00170-008-1610-6 Ratchev S, Nikov S, Moualek I (2004) Material removal simulation of peripheral milling of thin wall low-rigidity structures using FEA. Adv Eng Softw. doi:10.1016/j.advengsoft.2004.06.011 Rehling S (2009) Technologische Erweiterung der Simulation von NC-Fertigungsprozessen, Berichte aus dem IFW, Band 01/2009. PZH Produktionstechnisches Zentrum GmbH Schmidt A, Roubik J (1949) Distribution of heat generated in drilling. Trans ASME 71:245–252 Smolenicki D, Boos J, Kuster F, Wegener K (2012) Analysis of the chip formation of bainitic steel in drilling processes. In: Fifth CIRP conference on high performance cutting 2012. doi:10.1016/j.procir.2012.05.027 Surmann T, Ungemach E, Zabel A, Joliet R, Schröder A (2011) Simulation of the temperature distribution in NC-milled workpieces. Adv Mater Res 223:222–230. doi:10.4028/www.scientific.net/AMR.223.222