Predicting the fragility of renal calculi in response to shock wave lithotripsy through their radiographic appearance

African Journal of Urology - Tập 17 - Trang 37-42 - 2011
Mohamed Ali Elkoushy1, M. Nady2, A. Abdel Hafez3, E. Salah2
1Department of Urology, Suez Canal University, Ismailia, Egypt
2Department of Urology, Al-Azhar University, Assiut, Egypt
3Department of Urology, Sohag University, Sohag, Egypt

Tóm tắt

To evaluate the radiological characteristics of renal stones on plain X-ray film of the kidneys, ureters and bladder (KUB) area as predictors of stone fragility during shock wave lithotripsy (SWL). This prospective study included 336 patients who had a single renal pelvic stone ≤20 mm and were managed by SWL at 3 different centers. The patients were classified according to the radiological appearance of the stone on KUB film in terms of homogeneity, smoothness of the outline, and radiodensity in comparison to the last rib. The primary endpoint was the stone-free rate (SFR) within 3 months post-SWL. Multivariate regression analysis was used to compare the results. The overall SFR was 71.43%. SFR was significantly higher in heterogeneous compared with homogenous stones (86% vs. 53%; p<0.01) and in rough compared with smooth surface calculi (77% vs. 61%, p<0.01). SFRs for stones with density less than, similar to or higher than that of the last rib were 82%, 69% and 56%, respectively (p<0.01). Multivariate analysis showed a positive proportional relationship between stone fragility (SWL outcome) and one or more favorable radiological criteria. The radiological characteristics of renal calculi could predict their fragility after SWL. Stones which were heterogeneous, rough, or less dense than the last rib on KUB film were more likely to disintegrate during SWL.

Tài liệu tham khảo

Fuchs GJ. Interventional urinary stone management. J.Urol. 1994; Mar;151(3):668–669. Grasso M, Loisides P, Beaghler M, Bagley D. The case for primary endoscopic management of upper urinary tract calculi: I. A critical review of 121 extracorporeal shock-wave lithotripsy failures. Urology. 1995; Mar;45(3):363–371. Dretler SP, Polykoff G. Calcium oxalate stone morphology: Fine tuning our therapeutic distinctions. J.Urol. 1996; Mar;155(3):828–833. Abe T, Akakura K, Kawaguchi M, Ueda T, Ichikawa T, Ito H, et al. Outcomes of shockwave lithotripsy for upper urinary-tract stones: A large-scale study at a single institution. J.Endourol. 2005; Sep;19(7):768–773. Perks AE, Schuler TD, Lee J, Ghiculete D, Chung DG, D’A Honey RJ, et al. Stone attenuation and skin-tostone distance on computed tomography predicts for stone fragmentation by shock wave lithotripsy. Urology. 2008;72(4):765–769. White W, Klein F. Five-year clinical experience with the Dornier Delta lithotriptor. Urology. 2006; Jul;68(1):28–32. Coz F, Orvieto M, Bustos M, Lyng R, Stein C, Hinrichs A, et al. Extracorporeal shockwave lithotripsy of 2000 urinary calculi with the modulith SL-20: Success and failure according to size and location of stones. J.Endourol. 2000; Apr;14(3):239–246. Albala DM, Assimos DG, Clayman RV, Denstedt JD, Grasso M, Gutierrez Aceves J, et al. Lower pole I: A prospective randomized trial of extracorporeal shock wave lithotripsy and percutaneous nephrostolithotomy for lower pole nephrolithiasis-initial results. J.Urol. 2001; Dec;166(6):2072–2080. Pace KT, Ghiculete D, Harju M, Honey RJ. Shock wave lithotripsy at 60 or 120 shocks per minute: A randomized, double-blind trial. J.Urol. 2005; Aug;174(2):595–599. Ackermann DK, Fuhrimann R, Pfluger D, Studer UE, Zingg EJ. Prognosis after extracorporeal shock wave lithotripsy of radiopaque renal calculi: A multivariate analysis. Eur.Urol. 1994;25(2):105–109. Arshadi H, Dianat SS, Ganjehei L. Accuracy of radiological features for predicting extracorporeal shock wave lithotripsy success for treatment of kidney calculi. Urol.J. 2009;6(2):88–91. Cohen NP, Parkhouse H, Scott ML, Bowsher WG, Crocker P, Whitfield HN. Prediction of response to lithotripsy—the use of scanning electron microscopy and X-ray energy dispersive spectroscopy. Br.J.Urol. 1992; Nov;70(5):469–473. Dretler SP. Stone fragility—a new therapeutic distinction. J.Urol. 1988; May;139(5):1124–1127. Bhatta KM, Prien EL,Jr, Dretler SP. Cystine calculi—rough and smooth: A new clinical distinction. J.Urol. 1989; Oct;142(4):937–940. Williams JC,Jr, Saw KC, Paterson RF, Hatt EK, McAteer JA, Lingeman JE. Variability of renal stone fragility in shock wave lithotripsy. Urology. 2003; Jun;61(6):1092,6; discussion 1097. Chaussy C, Fuchs G, Kahn R, Hunter P, Goodfriend R. Transurethral ultrasonic ureterolithotripsy using a solidwire probe. Urology. 1987; May;29(5):531–532. Joseph P, Mandal AK, Singh SK, Mandal P, Sankhwar SN, Sharma SK. Computerized tomography attenuation value of renal calculus: Can it predict successful fragmentation of the calculus by extracorporeal shock wave lithotripsy? A preliminary study. J.Urol. 2002; May;167(5):1968–1971. Saw KC, McAteer JA, Fineberg NS, Monga AG, Chua GT, Lingeman JE, et al. Calcium stone fragility is predicted by helical CT attenuation values. J.Endourol. 2000; Aug;14(6):471–474. Mattelaer P, Schroder T, Fischer N, Jakse G. In situ extracorporeal shockwave lithotripsy of distal ureteral stones: Parameters for therapeutic success. Urol.Int. 1994;53(2):87–91. Saw KC, McAteer JA, Monga AG, Chua GT, Lingeman JE, Williams JC,Jr. Helical CT of urinary calculi: Effect of stone composition, stone size and scan collimation. AJR Am.J.Roentgenol. 2000; Aug;175(2):329–332. Bon D, Dore B, Irani J, Marroncle M, Aubert J. Radiographic prognostic criteria for extracorporeal shock-wave lithotripsy: A study of 485 patients. Urology. 1996; Oct;48(4):556,60; discussion 560–1. Aeberli D, Muller S, Schmutz R, Schmid HP. Predictive value of radiological criteria for disintegration rates of extracorporeal shock wave lithotripsy. Urol.Int. 2001;66(3):127–130. Krishnamurthy MS, Ferucci PG, Sankey N, Chandhoke PS. Is stone radiodensity a useful parameter for predicting outcome of extracorporeal shockwave lithotripsy for stones < or = 2 cm? Int.Braz J.Urol. 2005; Jan–Feb;31(1):3,8; discussion 9. 1110–5704