Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model
Tóm tắt
Từ khóa
Tài liệu tham khảo
Hughes L. Biological consequences of global warming: is the signal already apparent? Trends Ecol Evol. 2000;15(2):56–61.
Sun J, Qin XJ, Yang J. The response of vegetation dynamics of the different alpine grassland types to temperature and precipitation on the Tibetan Plateau. Environ Monit Assess. 2016;188:5–25. https://doi.org/10.1007/s10661-015-5014-4 .
Sun J, Cheng GW, Li WP. Meta-analysis of relationships between the environmental factors and the aboveground biomass in alpine grassland, Tibetan Plateau. Biogeosciences. 2013;10:1707–15. https://doi.org/10.5194/bg-10-1707-2013 .
Li N, Wang GX, Yang Y, Gao YH, Liu GS. Plant production, and carbon and nitrogen source pools, are strongly intensified by experimental warming in alpine ecosystems in the Qinghai–Tibet Plateau. Soil Biol Biochem. 2011;43(5):942–53.
Xu MH, Peng F, You GG, Guo J, Tian XF, Xue X, Liu M. Year-round warming and autumnal clipping lead to downward transport of root biomass, carbon and total nitrogen in soil of an alpine meadow. Environ Exp Bot. 2015;109(109):54–62.
Sun J, Cheng GW, Li WP, Sha YK, Yang YC. On the variation of NDVI with the principal climatic elements in the Tibetan Plateau. Remote Sens. 2013;5:1894–911. https://doi.org/10.3390/rs5041894 .
Liu WS, Zhao Y, You JL, Qi DH, Zhou Y, Chen JK, Song ZP. morphological and genetic variation along a north-to-south transect in Stipa purpurea, a dominant grass on the Qinghai–Tibetan Plateau: implications for response to climate change. PLoS ONE. 2016;11(8):e0161972.
Hu ZJ, Zhang YL & Yu HB. Simulation of Stipa purpurea distribution pattern on Tibetan Plateau based on MaxEnt model and GIS. Chin J Appl Ecol. 2015;12:505–11.
Wang J. Main types and characteristics of high-cold steppe in the Qiangtang Plateau of XiZang. Acta Phytoecologica et ceobotanica sinica. 1982;6(1):1–13.
Zheng D. On the natural zonation in the Qinghai-Xizang Plateau. Acta Geographica Sinica. 1979;34(1):1–11.
Liu WS, Dong M, Song ZP, Wei W. Genetic diversity pattern of Stipa purpurea populations in the hinterland of Qinghai–Tibet Plateau. Ann Appl Biol. 2009;154:57–65.
Liu W, Liao H, Zhou Y, Zhao Y, Song Z. Microsatellite primers in Stipa purpurea (Poaceae), a dominant species of the steppe on the Qinghai–Tibetan Plateau. Am J Bot. 2011;98:150–1.
Yang YQ, Li X, Xiang K, Ma L, Hu XY, Yang YP. Transcriptome analysis reveals diversified adaptation of Stipa purpurea along a drought gradient on the Tibetan Plateau. Funct Integr Genom. 2015;15:295–307.
Yi YJ, Cheng X, Yang ZF, Zhang SH. MaxEnt modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan, China. Ecol Eng. 2016;92:260–9.
Anderson OF, Guinotte JM, Rowden AA, Tracey DM, Mackay KA, Clark MR. Habitat suitability models for predicting the occurrence of vulnerable marine ecosystems in the seas around New Zealand. Deep Sea Res Part I Oceanogr Res Pap. 2016;115:265–92.
Elith J, Leathwick JR. Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst. 2009;40:677–97.
Guisan A, Thuiller W. Predicting species distribution: offering more than simple habitat models. Ecol Lett. 2005;8:993–1009.
Wisz MS, Pottier J, Kissling WD, Pellissier L, Lenoir J, Damgaard CF, Dormann CF, Forchhammer MC, Grytnes JA, Guisan A, Heikkinen RK, Hoye TT, Kuhn I, Luoto M, Maiorano L, Nilsson MC, Normand S, Ockinger E, Schmidt NM, Termansen M, Timmermann A, Wardle DA, Aastrup P, Svenning JC. The role of biotic interactions in shaping distributions and realised assemblages of species: implications for species distribution modelling. Biol Rev Camb Philos Soc. 2013;88:15–30.
Gilman SE, Urban MC, Tewksbury J, Gilchrist GW, Holt RD. A framework for community interactions under climate change. Trends Ecol Evol. 2010;25:325–31.
Cheung WWL, Lam VWY, Sarmiento JL, Kearney K, Watson R, Pauly D. Projecting global marine biodiversity impacts under climate change scenarios. Fish Fish. 2009;10:235–51.
Hermoso V, Kennard MJ, Linke S, Pearson R. Assessing the risks and opportunities of presence-only data for conservation planning. J Biogeogr. 2015;42:218–28.
Phillips SJ, Dud´k M, Schapire RE. A maximum entropy approach to species distribution modeling. Proceedings of the Twenty-First International Conference on Machine Learning. 2004; 83: 655–662.
Busby JR. BIOCLIM: a bioclimate analysis and prediction system. Plant Prot Q. 1991;6:8–9.
Carpenter G, Gillison AN, Winter J. DOMAIN: a flexible modelling procedure for mapping potential distributions of plants and animals. Biodivers Conserv. 1993;2:667–80.
Yee TW, Mitchell ND. Generalized additive models in plant ecology. J Veg Sci. 2002;157:141–56.
Lehmann A, Overton JM, Leathwick JR. Erratum to “GRASP: generalized regression analysis and spatial prediction”. Ecol Model. 2002;157:189–207.
Hirzel A, Guisan A. Which is the optimal sampling strategy for habitat suitability modelling. Ecol Model. 2002;157:331–41.
Phillips SJ, Anderson RP, Schapire RE. Maximum entropy modeling of species geographic distributions. Ecol Model. 2006;190:231–59.
Ni J. A simulation of biomes on the Tibetan Plateau and their responses to global climate change. Glob Ecol Biogeogr. 2000;20:80–9.
Yue PP, Lu XF, Ye RR, Zhang CX, Yang SB, Zhou YB, Peng M. Distribution of Stipa purpurea steppe in the Northeastern Qinghai–Xizang Plateau (China). Rus J Ecol. 2011;42:50–6.
IPOC. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies. Environ Policy Collect. 2008;5(5):399–406.
Vuuren DPV, Edmonds J, Kainuma M, Kainuma M, Riahi K, Thomson A, Hibbard K, Hurtt GC, Kram T, Krey V, Lamarque JF, Masui T, Meinshausen M, Nakicenovic N, Smith SJ, Rose SK. The representative concentration pathways: an overview. Clim Change. 2009;109:5–31. https://doi.org/10.1007/s10584-011-0148-z .
Weyant J, Azar C, Kainuma M, Kejun J, Nakicenovic N, Shukla PR, La Rovere E, Yohe G. Report of 2.6 Versus 2.9 Watts/m2 RCPP evaluation panel. Geneva: IPCC Secretariat; 2009.
R Development Core Team R: A language and environment for statistical computing, R Foundation for Statistical Computing, Vienna, Austria, ISBN.2011;3-900051-07-0. http://www.Rproject.org/ . Accessed 20 May 2015.
Phillips SJ, Dudík M, Schapire RE. Modeling of species distributions with MaxEnt: newextensions and a comprehensive evaluation. Ecography. 2008;31:161–75.
Jennie P, Ferrier S. Evaluating the predictive performance of habitat models developed using logistic regression. Ecol Model. 2000;133(3):225–45.
Araújo MB, Pearson RG, Thuiller WM. Validation of species-climate impact models under climate change. Glob Change Biol. 2005;11:1504–13.
Muscarella R, Galante PJ, Soley-Guardia M, Boria RA, Kass JM, Uriarte M, Anderson RP. ENMeval: an R package for conducting spatially independent evaluations and estimating optimal model complexity for MaxEnt ecological niche models. Methods Ecol Evol. 2014;5:1198–205.
Hanley JA, McNeil BJ. The meaning and use of the area under a receiver operating characteristic (ROC) curve. Radiology. 1982;143:29–36.
Radosavljevic A, Anderson RP, Araújo M. Making better MaxEnt models of species distributions: complexity, overfitting and evaluation. J Biogeogr. 2013;41:629–43.
Shcheglovitova M, Anderson RP. Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecol Model. 2013;269:9–17.
Qian SS. Environmental and Ecological Statistics with R. Chapman and Hall/CRC. Appl Environ Stat. 2010;324(2):117–54.
Zhong L, Ma YM, Salama MS, Su Z. Assessment of vegetation dynamics and their response to variations in precipitation and temperature in the Tibetan Plateau. Clim Change. 2010;103(3–4):519–35.
Wang J, Wang Z, Zhang X, Zhang Y, Ran C, Zhang J, Chen B, Zhang B. Response of Kobresia pygmaea and Stipa purpurea Grassland communities in Northern Tibet to nitrogen and phosphate addition. Mt Res Dev. 2015;35:78–86.
Wang T, Yu D, Li J, Ma K. Advances in research on the relationship between climatic change and tree-ring width. Acta Phytoecologica Sinica. 2003;27:23–33.
Yang H, Haiyan BU, Wenjing GE, Wang X, Xia Y, Bing MA. The relationship between seed size and main reserve contents of seeds in 41 Asteraceae species of alpine meadow in the northeastern Qinghai Tibet Plateau. Chin J Ecol. 2016;35:2299–312.
Kelly MR. Seed size in tropical trees: aomparative study of factors affecting seed size in Peruvian angiosperms. Oecologia. 1995;102:377–88.
Zhang H, Wang XP, Zhang YF, Hu R, Pan YX, Chen N. Responses of plant growth of different life forms to rainfall amount changes in an arid desert area. Chinese Journal of Ecology. 2015;34:1847–53.
Zhang HY, Fan JW, Shao QQ, Zhang YX. Ecosysytem dynamics in the ‘Returning Rangeland to Grassland’ programs, China. Acta Prataculturae Sinica. 2016;25(4):1–15.
Cao M, Prince SD, Small J, Goetz SJ. Remotely sensed interannual variations and trends in terrestrial net primary productivity 1981–2000. Ecosystems. 2004;7:233–42.
Yang YH, Piao SL. Variations in grassland vegetation cover in relation to climatic factors on the Tibetan Plateau. J Plant Ecol. 2006;30:1–8.
Xu MH, Xue X. A research on summer vegetation characteristics and short-time responses to experimental warming of alpine meadow in the Qingha–Tibetan Plateau. Acta Ecol Sin. 2013;33:2071–83.
Xu MH, Xue X. Analysis on the effects of climate warming on growth and phenology of alpine plants. J Arid Land Resour Environ. 2013;27:137–41.
Duan M, Gao Q, Wan Y, Yue LI, Guo Y, Luobu D. Effect of grazing on community characteristics and species diversity of Stipa purpurea alpine grassland in Northern Tibet. Acta Ecol Sin. 2010;30:3892–900.
Shang ZH, Ma YS, Long RJ, Ding LM. Effect Of fencing, artificial seeding and abandonment on vegetation composition and dynamics of ‘black soil land’ in the headwaters of the Yangtze and the Yellow Rivers of the Qinghai–Tibetan Plateau. Land Degrad Dev. 2008;19:554–63.
Yan Z, Wu XP, He XH, Zhang HM, Gong FF, Cai DX, Zhu P, Gao HJ. Basic soil productivity of spring maize in black soil under long-term fertilization based on DSSAT model. J Integr Agric. 2014;13:577–87.