Predicting the Potential Distribution of Paeonia veitchii (Paeoniaceae) in China by Incorporating Climate Change into a Maxent Model
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lawler, 2009, Projected climate-induced faunal change in the Western Hemisphere, Ecology, 90, 588, 10.1890/08-0823.1
Walck, 2011, Climate change and plant regeneration from seed, Global Chang. Biol., 17, 2145, 10.1111/j.1365-2486.2010.02368.x
Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., and Midgley, P.M. (2013). Climate Change 2013: The Physical Science Basis, Intergovernmental Panel on Climate Change. Contribution of Working Group I to the Fifth Assessment Report. Tech. rep.
Hu, X.G., Jin, Y., Wang, X.R., Mao, J.F., and Li, Y. (2015). Predicting impacts of future climate change on the distribution of the widespread conifer Platycladus orientalis. PLoS ONE, 10.
Ma, B., and Sun, J. (2018). Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecol., 18.
Peterson, A.T., Soberón, J., Pearson, R.G., Anderson, R.P., Martínez-Meyer, E., Nakamura, M., and Araújo, M.B. (2011). Ecological Niches and Geographic Distributions (MPB-49), Princeton University Press.
Fitzpatrick, 2008, Climate change, plant migration, and range collapse in a global biodiversity hotspot: The Banksia (Proteaceae) of Western Australia, Global Chang. Biol., 14, 1337, 10.1111/j.1365-2486.2008.01559.x
Zhang, 2018, Maxent modeling for predicting the potential geographical distribution of two peony species under climate change, Sci. Total Environ., 634, 1326, 10.1016/j.scitotenv.2018.04.112
Franklin, 2013, Species distribution models in conservation biogeography: Developments and challenges, Divers. Distrib., 19, 1217, 10.1111/ddi.12125
Margules, C.R., and Austin, M.P. (1991). BIOCLIM—a bioclimate analysis and prediction system. Nature Conervation: Cost Effective Biological Surveys and Data Analysis, CSIRO.
Carpenter, 1993, DOMAIN: A flexible modelling procedure for mapping potential distributions of plants and animals, Biodivers. Conserv., 2, 667, 10.1007/BF00051966
Hirzel, 2002, Which is the optimal sampling strategy for habitat suitability modelling, Ecol. Modell., 157, 331, 10.1016/S0304-3800(02)00203-X
Guisan, 2006, Making better bio-geographical predictions of species’ distributions, J. Appl. Ecol., 43, 386, 10.1111/j.1365-2664.2006.01164.x
Stockwell, 1999, The GARP modelling system: Problems and solutions to automated spatial prediction, Int. J. Geogr. Inf. Sci., 13, 143, 10.1080/136588199241391
Phillips, 2006, Maximum entropy modeling of species geographic distributions, Ecol. Modell., 190, 231, 10.1016/j.ecolmodel.2005.03.026
Ashraf, U., Ali, H., Chaudry, M., Ashraf, I., Batool, A., and Saqib, Z. (2016). Predicting the potential distribution of Olea ferruginea in Pakistan incorporating climate change by using Maxent model. Sustainability, 8.
Ficetola, 2007, Prediction and validation of the potential global distribution of a problematic alien invasive species—the American bullfrog, Divers. Distrib., 13, 476, 10.1111/j.1472-4642.2007.00377.x
Hong, 2017, Current status of wild tree peony species with special reference to conservation, Biodiv. Sci., 25, 781, 10.17520/biods.2017129
Meng, 2017, Research progress in the seeds of Paeonia ssp., Seed, 36, 50
Keenan, 2015, Climate change impacts and adaptation in forest management: A review, Ann. Forest. Sci., 72, 145, 10.1007/s13595-014-0446-5
Hong, 2004, A taxonomic revision of the Paeonia anomala complex (Paeoniaceae), Ann. Mo. Bot. Gard., 91, 87
Huang, 2013, Analysis of volatile oils from Paeonia veitchii Lynch, Chin. J. Spectrosc. Lab., 30, 2912
Wang, 2012, Study on pollen fertility in Paeonia veitchii, Guangdong Agric. Sci., 39, 28
Kang, 2011, Effect of shading in summer on photosynthetic characteristics of Paeonia veitchii, Shandong Agric. Sci., 3, 43
Hijmans, 2005, Very high resolution interpolated climate surfaces for global land areas, Int. J. Climatol., 25, 1965, 10.1002/joc.1276
New, 1999, Representing twentieth-century space-time climate variability. Part I: Development of a 1961–1990 mean monthly terrestrial climatology, J. Clim., 12, 829, 10.1175/1520-0442(1999)012<0829:RTCSTC>2.0.CO;2
Beckmann, 2014, glUV: A global UV-B radiation data set for macroecological studies, Methods Ecol. Evol., 5, 372, 10.1111/2041-210X.12168
Moss, R., Babiker, W., Brinkman, S., Calvo, E., Carter, T., Edmonds, J., Elgizouli, I., Emori, S., Erda, L., and Hibbard, K. (2008). Towards New Scenarios for Analysis of Emissions: Climate Change, Impacts, and Response Strategies, IPCC. IPCC Expert Meeting Report.
Vuuren, 2009, The representative concentration pathways: An overview, Clim. Chang., 109, 5, 10.1007/s10584-011-0148-z
Weyant, J., Azar, C., Kainuma, M., Kejun, J., Nakicenovic, N., Shukla, P.R., La Rovere, E., and Yohe, G. (2009). Report of 2.6 versus 2.9 Watts/m2 RCPP Evaluation Panel, Integrated Assessment Modeling Consortium.
Wu, 2014, An overview of BCC climate system model development and application for climate change studies, J. Meteorol. Res., 28, 34
Hu, J., and Liu, Y. (2014). Unveiling the conservation biogeography of a data-deficient endangered bird species under climate change. PLoS ONE, 9.
Phillips, 2017, Opening the black box: An open-source release of Maxent, Ecography, 40, 887, 10.1111/ecog.03049
Brown, 2014, SDM toolbox: A python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses, Methods Ecol. Evol., 5, 694, 10.1111/2041-210X.12200
Cheaib, 2012, Climate change impacts on tree ranges: Model intercomparison facilitates understanding and quantification of uncertainty, Ecol. Lett., 15, 533, 10.1111/j.1461-0248.2012.01764.x
Jing, 1999, The characteristics in seed germination and dormancy of four wild species of tree peonies and their bearing on endangerment, Acta Phytophysiol. Sin., 25, 214
Zhang, J.P., Li, D.Q., Shi, X.H., Zhang, D., Qiu, S., Wei, J.F., Zhang, J., Zhou, J.H., Zhu, K.Y., and Xia, Y.P. (2017). Mining and expression analysis of candidate genes involved in regulating the chilling requirement fulfillment of Paeonia lactiflora ‘Hang Baishao’. BMC Plant Biol., 17.
Baskin, C.C., and Baskin, J.M. (2014). Seeds: Ecology, Biogeography, and, Evolution of Dormancy and Germination, Elsevier/Academic Press. [2nd ed.].
Zhang, 2018, Research Progress on the effect of abiotic stress on the growth and development of Paeonia plant, Mol. Plant Breed., 16, 5072
Poorter, 2000, The role of biomass allocation in the growth response of plants to different levels of light, CO2, nutrients and water: A quantitative review, Funct. Plant Biol., 27, 1191, 10.1071/PP99173_CO
Du, S.B. (2016). The physiological and biochemical effects on Paeonia ostii under waterlogging stress and restoration. [Master’s Thesis, East China Normal University].
Cai, 2014, Increasing frequency of extreme El Nino events due to greenhouse warming, Nat. Clim. Chang., 4, 111, 10.1038/nclimate2100
Cavaliere, 2009, The effects of climate change on medicinal and aromatic plants, Herbal Gram, 81, 44
Lenoir, 2008, A significant upward shift in plant species optimum elevation during the 20th century, Science, 320, 1768, 10.1126/science.1156831
Xu, 2013, Analysis on effects of climate warming on growth and phenology of alpine plants, J. Arid Land Resour. Environ., 27, 137
Kodra, 2011, Persisting cold extremes under 21st—century warming scenarios, Geophys. Res. Lett., 38, 16, 10.1029/2011GL047103
Wang, 1998, Photosynthesis, water and nitrogen use efficiencies of four paper birch (Betula papyrifera) populations grown under different soil moisture and nutrient regimes, For. Ecol. Manag., 112, 233, 10.1016/S0378-1127(98)00407-1