Predicting of Covalent Organic Frameworks for Membrane-based Isobutene/1,3-Butadiene Separation: Combining Molecular Simulation and Machine Learning

Chemical Research in Chinese Universities - Tập 38 - Trang 421-427 - 2022
Xiaohao Cao1,2, Yanjing He1,3, Zhengqing Zhang1,4, Yuxiu Sun1,4, Qi Han1,4, Yandong Guo5, Chongli Zhong1,4
1State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin, P. R. China
2School of Material Science and Engineering, Tiangong University, Tianjin, P. R. China
3School of Textile Science and Engineering, Tiangong University, Tianjin, P. R. China
4School of Chemical Engineering and Technology, Tiangong University, Tianjin, P. R. China
5College of Mathematics Science, Bohai University, Jinzhou, P. R. China

Tóm tắt

Efficient separation of C4 olefins is of critical importance and a challenging task in petrochemical industry. Covalent organic frameworks(COFs) could be used as promising candidates for membrane-based isobutene/1,3-butadiene(i-C4H8/C4H6) separation. Owing to large amounts of COFs appearing, however, the rapid prediction of optimal COFs is imperative before experimental efforts. In this work, we combine molecular simulation and machine learning to study COF membranes for efficient isolation of i-C4H8 over C4H6. Using molecular simulation, four potential COF membranes, which possess both high membrane performance score (MPS) value and moderate membrane selectivity were screened out and the mechanism of membrane separation further revealed is an adsorption dominated process. Further, random forest(RF) model with high prediction accuracy(R2>0.84) was obtained and used for elucidating key factors in controlling the membrane selectivity and i-C4H8 permeability. Ultimately, the optimal COF features were obtained through structure-performance relationship study. Our results may trigger experimental efforts to accelerate the design of novel COFs with better i-C4H8/C4H6 separation performance.

Tài liệu tham khảo

Qi L., Zhang Y., Conrad M. A., Russell C. K., Miller J., Bell A. T., J. Am. Chem. Soc., 2020, 142, 14674 Liao P.-Q., Huang N.-Y., Zhang W.-X., Zhang J.-P., Chen X.-M., Science, 2017, 356, 1193 Gehre M., Guo Z., Rothenberg G., Tanase S., ChemSusChem, 2017, 10, 3947 Yang L., Qian S., Wang X., Cui X., Chen B., Xing H., Chem. Soc. Rev., 2020, 49, 5359 Sholl D. S., Lively R. P., Nature, 2016, 532, 435 Hosseini Monjezi B., Kutonova K., Tsotsalas M., Henke S., Knebel A., Angew. Chem. Int. Ed., 2021, 60, 15153 Yuan S., Li X., Zhu J., Zhang G., van Puyvelde P., van Der Bruggen B., Chem. Soc. Rev., 2019, 48, 2665 Oh H., Kalidindi S. B., Um Y., Bureekaew S., Schmid R., Fischer R. A., Hirscher M., Angew. Chem. Int. Ed., 2013, 52, 13219 Fan H., Mundstock A., Feldhoff A., Knebel A., Gu J., Meng H., Caro J., J. Am. Chem. Soc., 2018, 140, 10094 Ying Y., Peh S. B., Yang H., Yang Z., Zhao D., Adv. Mater., 2021, 2104946 Yan T., Lan Y., Tong M., Zhong C., ACS Sustainable Chem. Eng., 2019, 7, 1220 Altundal O. F., Altintas C., Keskin S., J. Mater. Chem. A, 2020, 8, 14609 Boyd P. G., Chidambaram A., García-Díez E., Ireland C. P., Daff T. D., Bounds R., Gładysiak A., Schouwink P., Moosavi S. M., Maroto-Valer M. M., Reimer J. A., Navarro J. A. R., Woo T. K., Garcia S., Stylianou K. C., Smit B., Nature, 2019, 576, 253 Cho E. H., Deng X., Zou C., Lin L.-C., J. Phys. Chem. C, 2020, 124, 27580 Yang P., Lu G., Yang Q., Liu L., Lai X., Yu D., Green Energy Environ., 2021, DOI: https://doi.org/10.1016/j.gee.2021.01.006 Zhang Z., Yang Q., Cui X., Yang L., Bao Z., Ren Q., Xing H., Angew. Chem. Int. Ed., 2017, 56, 16282 Cui J., Zhang Z., Hu J., Yang L., Li Y., Chen L., Cui X., Xing H., Chem. Eng. J., 2021, 425, 130580 Cui J., Zhang Z., Tan B., Zhang Y., Wang P., Cui X., Xing H., Chem. Asian J., 2019, 14, 3572 Tong M., Lan Y., Qin Z., Zhong C., J. Phys. Chem. C, 2018, 122, 13009 Ongari D., Yakutovich A. V., Talirz L., Smit B., ACS Cent. Sci., 2019, 5, 1663 Yang L., Qian S., Wang X., Cui X., Chen B., Xing H., Chem. Soc. Rev., 2020, 49, 5359 Willems T. F., Rycroft C. H., Kazi M., Meza J. C., Haranczyk M., Micropor. Mesopor. Mater., 2012, 149, 134 Yang Q., Liu D., Zhong C., Li J.-R., Chem. Rev., 2013, 113, 8261 Mayo S. L., Olafson B. D., Goddard W. A., J. Phys. Chem., 1990, 94, 8897 Keasler S. J., Charan S. M., Wick C. D., Economou I. G., Siepmann J. I., J. Phys. Chem. B, 2012, 116, 11234 Daglar H., Erucar I., Keskin S., J. Membr. Sci., 2021, 618, 118555 Pedregosa F., Varoquaux G., Gramfort A., Michel V., Thirion B., Grisel O., Blondel M., Prettenhofer P., Weiss R., Dubourg V., J. Mach. Learn. Res., 2011, 12, 2825 Qiao Z., Peng C., Zhou J., Jiang J., J. Mater. Chem. A, 2016, 4, 15904 Chen W., Li M., Peng W.-L., Huang L., Zhao C., Acharya D., Liu W., Zheng A., Green Energy Environ., 2020, DOI: https://doi.org/10.1016/j.gee.2020.09.016 Park H. B., Kamcev J., Robeson L. M., Elimelech M., Freeman B. D., Science, 2017, 356, 1137 Liu L., Wang L., Liu D., Yang Q., Zhong C., Green Energy Environ., 2020, 5, 333 Yang W., Liang H., Peng F., Liu Z., Liu J., Qiao Z., Nanomaterials, 2019, 9, 467 Sun Z., Shi J., Wu K., Li X., Ind. Eng. Chem. Res., 2018, 57, 3430 Chai D., Yang G., Fan Z., Li X., Chem. Eng. J., 2019, 370, 1534