Predicting future cognitive decline from non-brain and multimodal brain imaging data in healthy and pathological aging
Tài liệu tham khảo
Abraham, 2017, Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example, NeuroImage., 147, 736, 10.1016/j.neuroimage.2016.10.045
Abraham, 2014, Machine learning for neuroimaging with Scikit-Learn, Front. Neuroinformat., 8, 10.3389/fninf.2014.00014
Balsis, 2015, How do scores on the ADAS-Cog, MMSE, and CDR-SOB correspond?, Clin. Neuropsychol., 29, 1002, 10.1080/13854046.2015.1119312
Barnett, 2005, Regression to the mean: what it is and how to deal with it, Int. J. Epidemiol., 34, 215, 10.1093/ije/dyh299
Bartel, 2017, Regional analysis of volumes and reproducibilities of automatic and manual hippocampal segmentations, PloS One., 12, 10.1371/journal.pone.0166785
Bengio, 2004, No unbiased estimator of the variance of k-fold cross-validation, J. Machine Learn. Res., 5, 1089
Bhagwat, 2018, Modeling and prediction of clinical symptom trajectories in Alzheimer's disease using longitudinal data, PLoS Computat. Biol., 14, 10.1371/journal.pcbi.1006376
Borod, 1980, Normative data on the Boston diagnostic aphasia examination, parietal lobe battery, and the Boston Naming Test, J. Clin. Neuropsychol, 10.1080/01688638008403793
Breiman, 2001, Random forests, Machine Learning
Buck, 1960, A method of estimation of missing values in multivariate data suitable for use with an electronic computer, J. Royal Stats Socc Series B, Stats. Methodol., 22, 302
Bucks, 2013, Trail-making test, 1986
Carp, 2012, On the plurality of (methodological) worlds: estimating the analytic flexibility of FMRI experiments, Front. Neurosci., 6, 149
Ciric, 2017, Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity, NeuroImage., 154, 174, 10.1016/j.neuroimage.2017.03.020
Cole, 2017, Predicting age using neuroimaging: innovative brain ageing biomarkers, Trends Neurosci., 40, 681, 10.1016/j.tins.2017.10.001
Cuthbert, 2014, The RDoC Framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology, World Psychiatry., 13, 28, 10.1002/wps.20087
Dadi, 2019, Benchmarking functional connectome-based predictive models for resting-state fMRI, NeuroImage., 192, 115, 10.1016/j.neuroimage.2019.02.062
Dadi, 2021, Population modeling with machine learning can enhance measures of mental health, GigaSci., 10, 10.1093/gigascience/giab071
Dansereau, C., A. Tam, A. Badhwar, S. Urchs, P. Orban, P. Rosa-Neto, and P. Bellec. 2017. “A brain signature highly predictive of future progression to Alzheimer's dementia” (Version 2). arXiv. doi:10.48550/arXiv.1712.08058.
Davatzikos, 2019, Machine learning in neuroimaging: progress and challenges, NeuroImage., 197, 652, 10.1016/j.neuroimage.2018.10.003
Davatzikos, 2011, Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification, Neurobiol. Aging., 32, 10.1016/j.neurobiolaging.2010.05.023
Desikan, 2006, An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, NeuroImage., 31, 968, 10.1016/j.neuroimage.2006.01.021
Dubois, 2018, Resting-state functional brain connectivity best predicts the personality dimension of openness to experience, Personality Neurosci, 10.1017/pen.2018.8
Elwood, 1991, The Wechsler Memory Scale-Revised: psychometric characteristics and clinical application, Neuropsychol. Rev., 2, 179, 10.1007/BF01109053
Engemann, 2020, Combining magnetoencephalography with magnetic resonance imaging enhances learning of surrogate-biomarkers, eLife., 9
Eskildsen, 2015, Structural imaging biomarkers of Alzheimer's disease: predicting disease progression, Neurobiol. Aging., 36, S23, 10.1016/j.neurobiolaging.2014.04.034
Esteban, 2018, fMRIPrep: a robust preprocessing pipeline for functional MRI, Nat. Methods
Filippi, 2019, Resting state dynamic functional connectivity in neurodegenerative conditions: a review of magnetic resonance imaging findings, Front. Neurosci., 13, 657, 10.3389/fnins.2019.00657
Fischl, 2012, FreeSurfer, NeuroImage, 10.1016/j.neuroimage.2012.01.021
Folstein, 1975, ‘Mini-Mental State’. a practical method for grading the cognitive state of patients for the clinician, J Psychiatr. Res., 12, 189, 10.1016/0022-3956(75)90026-6
Franzen, 2000, The Wechsler Adult Intelligence Scale-Revised and Wechsler Adult Intelligence Scale-III.”, Reliabil. Valid. Neuropsychol. Assess, 10.1007/978-1-4757-3224-5_6
Gaser, 2013, BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer's disease, PloS One., 8, e67346, 10.1371/journal.pone.0067346
Gorgolewski, 2016, The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments, Sci. Data., 3
Hojjati, 2018, Predicting conversion from MCI to AD by integrating Rs-fMRI and structural MRI, Comput. Biol. Med., 102, 30, 10.1016/j.compbiomed.2018.09.004
Hosseini, 2020, I tried a bunch of things: the dangers of unexpected overfitting in classification of brain data, Neurosci. Biobehav. Rev., 119, 456, 10.1016/j.neubiorev.2020.09.036
Jette, 1986, The functional status questionnaire: reliability and validity when used in primary care, J. Gen. Inter. Med., 1, 143, 10.1007/BF02602324
Josse, J., N. Prost, E. Scornet, and G. Varoquaux. 2019. “On the consistency of supervised learning with missing values” (Version 3). arXiv. doi: 10.48550/arXiv.1902.06931
Kaufer, 2000, Validation of the NPI-Q, a brief clinical form of the neuropsychiatric inventory, J Neuropsychiatry Clin. Neurosci., 12, 233, 10.1176/jnp.12.2.233
Korolev, 2016, Predicting progression from mild cognitive impairment to Alzheimer's dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification, PloS One., 11, 10.1371/journal.pone.0138866
LaMontagne, 2019, OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease, Radiol. Imaging
Liem, F. 2020. Fliem/cpr 0.1.1. https://doi.org/10.5281/zenodo.3726641.
Liem, 2019, Predicting future cognitive change from multiple data sources (pilot Study), OSF
Liem, F., L. Geerligs, J.S. Damoiseaux, and D.S. Margulies. 2020. “Functional connectivity in aging.” https://doi.org/10.31234/osf.io/whsud.
Liem, 2017, Predicting brain-age from multimodal imaging data captures cognitive impairment, NeuroImage., 148, 179, 10.1016/j.neuroimage.2016.11.005
Morris, 1993, The Clinical Dementia Rating (CDR): current version and scoring rules, Neurology., 43, 2412, 10.1212/WNL.43.11.2412-a
Morris, 2006, The Uniform Data Set (UDS): clinical and cognitive variables and descriptive data from Alzheimer disease centers, Alzheimer Dis. Assoc. Disord., 20, 210, 10.1097/01.wad.0000213865.09806.92
Mulder, 2014, Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST, NeuroImage., 92, 169, 10.1016/j.neuroimage.2014.01.058
Na, 2019, Prediction of future cognitive impairment among the community elderly: a machine-learning based approach, Sci. Rep., 9, 3335, 10.1038/s41598-019-39478-7
Orban, 2018, Multisite generalizability of schizophrenia diagnosis classification based on functional brain connectivity, Schizophren. Res., 192, 167, 10.1016/j.schres.2017.05.027
Oschwald, 2019, Brain structure and cognitive ability in healthy aging: a review on longitudinal correlated change, Rev. Neurosci., 31, 1, 10.1515/revneuro-2018-0096
Pedregosa, 2011, Scikit-Learn: machine learning in Python, J. Machine Learning Res., 12, 2825
Pfeffer, 1982, Measurement of functional activities in older adults in the community, J. Gerontol., 37, 323, 10.1093/geronj/37.3.323
Pipitone, 2014, Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates, NeuroImage., 101, 494, 10.1016/j.neuroimage.2014.04.054
Rahim, 2017, Joint prediction of multiple scores captures better individual traits from brain images, NeuroImage., 158, 145, 10.1016/j.neuroimage.2017.06.072
Rahim, 2016, Transmodal learning of functional networks for Alzheimer's disease prediction, IEEE J. Select. Top. Sign. Proc., 10, 120
Rahim, 2019, Population Shrinkage of Covariance (PoSCE) for better individual brain functional-connectivity estimation, Med. Image Anal., 54, 138, 10.1016/j.media.2019.03.001
Rathore, 2017, A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages, NeuroImage., 155, 530, 10.1016/j.neuroimage.2017.03.057
Scheinost, 2019, Ten simple rules for predictive modeling of individual differences in neuroimaging, NeuroImage., 193, 35, 10.1016/j.neuroimage.2019.02.057
Schulz, 2022, Performance reserves in brain-imaging-based phenotype prediction, bioRxiv Preprint
Schulz, 2020, Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets, Nat. Commun., 11, 4238, 10.1038/s41467-020-18037-z
Seabold, 2010, Statsmodels: econometric and statistical modeling with Python, 57, 61, 10.25080/Majora-92bf1922-011
Seitzman, 2020, A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum, NeuroImage., 206
Tam, 2019, A highly predictive signature of cognition and brain atrophy for progression to Alzheimer's dementia, GigaSci., 8, 10.1093/gigascience/giz055
Varoquaux, 2018, Cross-validation failure: small sample sizes lead to large error bars, NeuroImage., 180, 68, 10.1016/j.neuroimage.2017.06.061
Vogel, 2018, Brain properties predict proximity to symptom onset in sporadic Alzheimer's disease, Brain., 141, 1871, 10.1093/brain/awy093
Wachinger, 2016, Whole-brain analysis reveals increased neuroanatomical asymmetries in dementia for hippocampus and amygdala, Brain., 139, 3253, 10.1093/brain/aww243
Weintraub, 2009, The Alzheimer's Disease Centers' Uniform Data Set (UDS): the neuropsychologic test battery, Alzheimer Dis. Assoc. Disord., 23, 91, 10.1097/WAD.0b013e318191c7dd
Wilkosz, 2010, Trajectories of cognitive decline in Alzheimer's disease, Int. Psychogeriatrics /IPA, 22, 281, 10.1017/S1041610209991001
Woo, 2017, Building better biomarkers: brain models in translational neuroimaging, Nat. Neurosci., 20, 365, 10.1038/nn.4478
Yesavage, 1982, Development and validation of a geriatric depression screening scale: a preliminary report, J. Psychiatr. Res, 17, 37, 10.1016/0022-3956(82)90033-4