Predicting future cognitive decline from non-brain and multimodal brain imaging data in healthy and pathological aging

Neurobiology of Aging - Tập 118 - Trang 55-65 - 2022
Bruno Hebling Vieira1,2, Franziskus Liem3, Kamalaker Dadi4, Denis A. Engemann4,5, Alexandre Gramfort4, Pierre Bellec6, Richard Cameron Craddock7, Jessica S. Damoiseaux8, Christopher J. Steele9, Tal Yarkoni10, Nicolas Langer1,2,3, Daniel S. Margulies11, Gaël Varoquaux4
1Methods of Plasticity Research, Department of Psychology, University of Zurich, Zurich, Switzerland
2Neuroscience Center Zurich (ZNZ), University of Zurich & ETH Zurich, Zurich, Switzerland
3University Research Priority Program “Dynamics of Healthy Aging”, University of Zurich, Zurich, Switzerland
4Université Paris-Saclay, Inria, CEA, Palaiseau, France
5Department of Neurology, Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
6Functional Neuroimaging Unit, Geriatric Institute, University of Montreal, Montreal, Quebec, Canada
7Computational Neuroimaging Lab, Dell Medical School, The University of Texas, Austin, TX, USA
8Institute of Gerontology and the Department of Psychology, Wayne State University, Detroit, MI, USA
9Department of Psychology, Concordia University, Montreal, Canada
10Department of Psychology, The University of Texas, Austin, TX, USA
11Cognitive Neuroanatomy Lab, Institut du Cerveau et de la Moelle épinière, Paris, France

Tài liệu tham khảo

Abraham, 2017, Deriving reproducible biomarkers from multi-site resting-state data: an autism-based example, NeuroImage., 147, 736, 10.1016/j.neuroimage.2016.10.045 Abraham, 2014, Machine learning for neuroimaging with Scikit-Learn, Front. Neuroinformat., 8, 10.3389/fninf.2014.00014 Balsis, 2015, How do scores on the ADAS-Cog, MMSE, and CDR-SOB correspond?, Clin. Neuropsychol., 29, 1002, 10.1080/13854046.2015.1119312 Barnett, 2005, Regression to the mean: what it is and how to deal with it, Int. J. Epidemiol., 34, 215, 10.1093/ije/dyh299 Bartel, 2017, Regional analysis of volumes and reproducibilities of automatic and manual hippocampal segmentations, PloS One., 12, 10.1371/journal.pone.0166785 Bengio, 2004, No unbiased estimator of the variance of k-fold cross-validation, J. Machine Learn. Res., 5, 1089 Bhagwat, 2018, Modeling and prediction of clinical symptom trajectories in Alzheimer's disease using longitudinal data, PLoS Computat. Biol., 14, 10.1371/journal.pcbi.1006376 Borod, 1980, Normative data on the Boston diagnostic aphasia examination, parietal lobe battery, and the Boston Naming Test, J. Clin. Neuropsychol, 10.1080/01688638008403793 Breiman, 2001, Random forests, Machine Learning Buck, 1960, A method of estimation of missing values in multivariate data suitable for use with an electronic computer, J. Royal Stats Socc Series B, Stats. Methodol., 22, 302 Bucks, 2013, Trail-making test, 1986 Carp, 2012, On the plurality of (methodological) worlds: estimating the analytic flexibility of FMRI experiments, Front. Neurosci., 6, 149 Ciric, 2017, Benchmarking of participant-level confound regression strategies for the control of motion artifact in studies of functional connectivity, NeuroImage., 154, 174, 10.1016/j.neuroimage.2017.03.020 Cole, 2017, Predicting age using neuroimaging: innovative brain ageing biomarkers, Trends Neurosci., 40, 681, 10.1016/j.tins.2017.10.001 Cuthbert, 2014, The RDoC Framework: facilitating transition from ICD/DSM to dimensional approaches that integrate neuroscience and psychopathology, World Psychiatry., 13, 28, 10.1002/wps.20087 Dadi, 2019, Benchmarking functional connectome-based predictive models for resting-state fMRI, NeuroImage., 192, 115, 10.1016/j.neuroimage.2019.02.062 Dadi, 2021, Population modeling with machine learning can enhance measures of mental health, GigaSci., 10, 10.1093/gigascience/giab071 Dansereau, C., A. Tam, A. Badhwar, S. Urchs, P. Orban, P. Rosa-Neto, and P. Bellec. 2017. “A brain signature highly predictive of future progression to Alzheimer's dementia” (Version 2). arXiv. doi:10.48550/arXiv.1712.08058. Davatzikos, 2019, Machine learning in neuroimaging: progress and challenges, NeuroImage., 197, 652, 10.1016/j.neuroimage.2018.10.003 Davatzikos, 2011, Prediction of MCI to AD conversion, via MRI, CSF biomarkers, and pattern classification, Neurobiol. Aging., 32, 10.1016/j.neurobiolaging.2010.05.023 Desikan, 2006, An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest, NeuroImage., 31, 968, 10.1016/j.neuroimage.2006.01.021 Dubois, 2018, Resting-state functional brain connectivity best predicts the personality dimension of openness to experience, Personality Neurosci, 10.1017/pen.2018.8 Elwood, 1991, The Wechsler Memory Scale-Revised: psychometric characteristics and clinical application, Neuropsychol. Rev., 2, 179, 10.1007/BF01109053 Engemann, 2020, Combining magnetoencephalography with magnetic resonance imaging enhances learning of surrogate-biomarkers, eLife., 9 Eskildsen, 2015, Structural imaging biomarkers of Alzheimer's disease: predicting disease progression, Neurobiol. Aging., 36, S23, 10.1016/j.neurobiolaging.2014.04.034 Esteban, 2018, fMRIPrep: a robust preprocessing pipeline for functional MRI, Nat. Methods Filippi, 2019, Resting state dynamic functional connectivity in neurodegenerative conditions: a review of magnetic resonance imaging findings, Front. Neurosci., 13, 657, 10.3389/fnins.2019.00657 Fischl, 2012, FreeSurfer, NeuroImage, 10.1016/j.neuroimage.2012.01.021 Folstein, 1975, ‘Mini-Mental State’. a practical method for grading the cognitive state of patients for the clinician, J Psychiatr. Res., 12, 189, 10.1016/0022-3956(75)90026-6 Franzen, 2000, The Wechsler Adult Intelligence Scale-Revised and Wechsler Adult Intelligence Scale-III.”, Reliabil. Valid. Neuropsychol. Assess, 10.1007/978-1-4757-3224-5_6 Gaser, 2013, BrainAGE in mild cognitive impaired patients: predicting the conversion to Alzheimer's disease, PloS One., 8, e67346, 10.1371/journal.pone.0067346 Gorgolewski, 2016, The brain imaging data structure, a format for organizing and describing outputs of neuroimaging experiments, Sci. Data., 3 Hojjati, 2018, Predicting conversion from MCI to AD by integrating Rs-fMRI and structural MRI, Comput. Biol. Med., 102, 30, 10.1016/j.compbiomed.2018.09.004 Hosseini, 2020, I tried a bunch of things: the dangers of unexpected overfitting in classification of brain data, Neurosci. Biobehav. Rev., 119, 456, 10.1016/j.neubiorev.2020.09.036 Jette, 1986, The functional status questionnaire: reliability and validity when used in primary care, J. Gen. Inter. Med., 1, 143, 10.1007/BF02602324 Josse, J., N. Prost, E. Scornet, and G. Varoquaux. 2019. “On the consistency of supervised learning with missing values” (Version 3). arXiv. doi: 10.48550/arXiv.1902.06931 Kaufer, 2000, Validation of the NPI-Q, a brief clinical form of the neuropsychiatric inventory, J Neuropsychiatry Clin. Neurosci., 12, 233, 10.1176/jnp.12.2.233 Korolev, 2016, Predicting progression from mild cognitive impairment to Alzheimer's dementia using clinical, MRI, and plasma biomarkers via probabilistic pattern classification, PloS One., 11, 10.1371/journal.pone.0138866 LaMontagne, 2019, OASIS-3: longitudinal neuroimaging, clinical, and cognitive dataset for normal aging and Alzheimer disease, Radiol. Imaging Liem, F. 2020. Fliem/cpr 0.1.1. https://doi.org/10.5281/zenodo.3726641. Liem, 2019, Predicting future cognitive change from multiple data sources (pilot Study), OSF Liem, F., L. Geerligs, J.S. Damoiseaux, and D.S. Margulies. 2020. “Functional connectivity in aging.” https://doi.org/10.31234/osf.io/whsud. Liem, 2017, Predicting brain-age from multimodal imaging data captures cognitive impairment, NeuroImage., 148, 179, 10.1016/j.neuroimage.2016.11.005 Morris, 1993, The Clinical Dementia Rating (CDR): current version and scoring rules, Neurology., 43, 2412, 10.1212/WNL.43.11.2412-a Morris, 2006, The Uniform Data Set (UDS): clinical and cognitive variables and descriptive data from Alzheimer disease centers, Alzheimer Dis. Assoc. Disord., 20, 210, 10.1097/01.wad.0000213865.09806.92 Mulder, 2014, Hippocampal volume change measurement: quantitative assessment of the reproducibility of expert manual outlining and the automated methods FreeSurfer and FIRST, NeuroImage., 92, 169, 10.1016/j.neuroimage.2014.01.058 Na, 2019, Prediction of future cognitive impairment among the community elderly: a machine-learning based approach, Sci. Rep., 9, 3335, 10.1038/s41598-019-39478-7 Orban, 2018, Multisite generalizability of schizophrenia diagnosis classification based on functional brain connectivity, Schizophren. Res., 192, 167, 10.1016/j.schres.2017.05.027 Oschwald, 2019, Brain structure and cognitive ability in healthy aging: a review on longitudinal correlated change, Rev. Neurosci., 31, 1, 10.1515/revneuro-2018-0096 Pedregosa, 2011, Scikit-Learn: machine learning in Python, J. Machine Learning Res., 12, 2825 Pfeffer, 1982, Measurement of functional activities in older adults in the community, J. Gerontol., 37, 323, 10.1093/geronj/37.3.323 Pipitone, 2014, Multi-atlas segmentation of the whole hippocampus and subfields using multiple automatically generated templates, NeuroImage., 101, 494, 10.1016/j.neuroimage.2014.04.054 Rahim, 2017, Joint prediction of multiple scores captures better individual traits from brain images, NeuroImage., 158, 145, 10.1016/j.neuroimage.2017.06.072 Rahim, 2016, Transmodal learning of functional networks for Alzheimer's disease prediction, IEEE J. Select. Top. Sign. Proc., 10, 120 Rahim, 2019, Population Shrinkage of Covariance (PoSCE) for better individual brain functional-connectivity estimation, Med. Image Anal., 54, 138, 10.1016/j.media.2019.03.001 Rathore, 2017, A review on neuroimaging-based classification studies and associated feature extraction methods for Alzheimer's disease and its prodromal stages, NeuroImage., 155, 530, 10.1016/j.neuroimage.2017.03.057 Scheinost, 2019, Ten simple rules for predictive modeling of individual differences in neuroimaging, NeuroImage., 193, 35, 10.1016/j.neuroimage.2019.02.057 Schulz, 2022, Performance reserves in brain-imaging-based phenotype prediction, bioRxiv Preprint Schulz, 2020, Different scaling of linear models and deep learning in UKBiobank brain images versus machine-learning datasets, Nat. Commun., 11, 4238, 10.1038/s41467-020-18037-z Seabold, 2010, Statsmodels: econometric and statistical modeling with Python, 57, 61, 10.25080/Majora-92bf1922-011 Seitzman, 2020, A set of functionally-defined brain regions with improved representation of the subcortex and cerebellum, NeuroImage., 206 Tam, 2019, A highly predictive signature of cognition and brain atrophy for progression to Alzheimer's dementia, GigaSci., 8, 10.1093/gigascience/giz055 Varoquaux, 2018, Cross-validation failure: small sample sizes lead to large error bars, NeuroImage., 180, 68, 10.1016/j.neuroimage.2017.06.061 Vogel, 2018, Brain properties predict proximity to symptom onset in sporadic Alzheimer's disease, Brain., 141, 1871, 10.1093/brain/awy093 Wachinger, 2016, Whole-brain analysis reveals increased neuroanatomical asymmetries in dementia for hippocampus and amygdala, Brain., 139, 3253, 10.1093/brain/aww243 Weintraub, 2009, The Alzheimer's Disease Centers' Uniform Data Set (UDS): the neuropsychologic test battery, Alzheimer Dis. Assoc. Disord., 23, 91, 10.1097/WAD.0b013e318191c7dd Wilkosz, 2010, Trajectories of cognitive decline in Alzheimer's disease, Int. Psychogeriatrics /IPA, 22, 281, 10.1017/S1041610209991001 Woo, 2017, Building better biomarkers: brain models in translational neuroimaging, Nat. Neurosci., 20, 365, 10.1038/nn.4478 Yesavage, 1982, Development and validation of a geriatric depression screening scale: a preliminary report, J. Psychiatr. Res, 17, 37, 10.1016/0022-3956(82)90033-4