Dự đoán vi khuẩn coliform phân sử dụng phương pháp khoảng-khoảng và SWAT ở lưu vực Miyun, Trung Quốc

Springer Science and Business Media LLC - Tập 24 - Trang 15462-15470 - 2017
Jianwen Bai1, Zhenyao Shen1, Tiezhu Yan1, Jiali Qiu1, Yangyang Li2
1State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
2Chinese Academy for Environmental Planning, Beijing, China

Tóm tắt

Các tác nhân gây bệnh trong phân có thể gây ra các đợt bùng phát bệnh tật qua nước, gây ốm nghiêm trọng và thậm chí gây chết người ở người. Do đó, thông tin về sự biến đổi và vận chuyển của vi khuẩn là rất quan trọng để xác định nguồn gốc của chúng. Trong nghiên cứu này, Công cụ Đánh giá Đất và Nước (SWAT) đã được áp dụng để mô phỏng tải lượng vi khuẩn coliform phân trong lưu vực Hồ Miyun, Trung Quốc. Dữ liệu về vi khuẩn coliform phân được thu thập tại ba điểm lấy mẫu, Chenying (CY), Gubeikou (GBK) và Xiahui (XH). Các quy trình hiệu chỉnh cho vi khuẩn coliform phân được thực hiện bằng cách sử dụng các điểm CY và GBK, và xác minh được thực hiện tại điểm XH. Một phương pháp khoảng-khoảng đã được thiết kế và tích hợp vào các quy trình hiệu chỉnh và xác minh vi khuẩn coliform phân. Khoảng tin cậy 95% của các giá trị dự đoán và khoảng tin cậy 95% của các giá trị đo được đã được xem xét trong quá trình hiệu chỉnh và xác minh theo phương pháp khoảng-khoảng. So với phương pháp so sánh điểm-điểm truyền thống, phương pháp này có thể cải thiện độ chính xác của mô phỏng. Kết quả cho thấy việc mô phỏng vi khuẩn coliform phân bằng phương pháp khoảng-khoảng là hợp lý cho lưu vực này. Phương pháp này có thể cung cấp một hướng nghiên cứu mới cho các nghiên cứu hiệu chỉnh và xác minh mô hình trong tương lai.

Từ khóa

#vi khuẩn coliform #phân #phương pháp khoảng-khoảng #lưu vực nước #mô hình SWAT

Tài liệu tham khảo

Abbaspour KC (2011) SWAT-CUP4: SWAT calibration and uncertainty programs—a user manual. Department of Systems Analysis, Integrated Assessment and Modelling (SIAM), Eawag, Swiss Federal Institute of Aquatic Science and Technology, Switzerland Abbaspour KC, Yang J, Maximov I, Siber R, Bogner K, Mieleitner J, Zobrist J, Srinivasan R (2007) Modelling hydrology and water quality in the pre-alpine/alpine Thur watershed using SWAT. J Hydrol 333:413–430 Ackerman D, Weisberg SB (2003) Relationship between rainfall and beach bacterial concentrations on Santa Monica bay beaches. J Water Health 1:85–89 ASAE (2000) Standard D384.1: manure production and characteristics. American Society of Agricultural Engineers, St. Joseph Baffaut C, Benson VW (2009) Modeling flow and pollutant transport in a karst watershed with SWAT. Trans ASABE 52(2):469–479 Baffaut C, Sadeghi A (2010) Bacteria modeling with SWAT for assessment and remediation studies: a review. Trans ASABE 53(5):1585–1594 Bai J, Shen Z, Yan T (2016) Effectiveness of vegetative filter strips in abating fecal coliform based on modified soil and water assessment tool. Int J Environ Sci Te 13(7):1723–1730 Baldassarre GD, Montanari A (2009) Uncertainty in river discharge observations: a quantitative analysis. Hydrol Earth Syst Sci 13:913–921 Bao ZX, Fu GB, Wang GQ, Jin JL, He RM, Yan XL, Liu CS (2012) Hydrological projection for the Miyun reservoir basin with the impact of climate change and human activity. Quatern Int 282:96–103 Benham BL, Baffaut C, Zeckoski RW, Mankin KR, Pachepsky YA, Sadeghi AM, Brannan KM, Soupir ML, Habersack MJ (2006) Modeling bacteria fate and transport in watersheds to support TMDLS. Trans ASABE 49(4):987–1002 Bougeard M, Le Saux JC, Perenne N, Baffaut C, Robin M, Pommepuy M (2011) Modeling of Escherichia coli fluxes on a catchment and the impact on coastal water and shellfish quality. J Am Water Resour As 47(2):350–366 Chen L, Shen ZY, Yang XH, Liao Q, Yu SL (2014) An interval-deviation approach for hydrology and water quality model evaluation within an uncertainty framework. J Hydrol 509:207–214 Cho KH, Pachepsky YA, Kim JH, Kim JW, Park MH (2012) The modified SWAT model for predicting fecal coliforms in the Wachusett reservoir watershed, USA. Water Res 46:4750–4760 Coffey R, Cummins E, Flaherty VO, Cormican M (2010) Analysis of the soil and water assessment tool (SWAT) to model cryptosporidium in surface water sources. Biosyst Eng 106:303–314 Eisenhart C, Wilson PW (1943) Statistical methods and control in bacteriology. Bacteriol Rev 7(2):57–137 Fayer R, Trout JM (2005) Zoonotic protists in the marine environment. Oceans and Health: Pathogens in the Marine Environment. Kluwer Academic Publishers, Dordrecht, pp 143–163 Franz KJ, Hogue TS (2011) Evaluating uncertainty estimates in hydrologic models: borrowing measures from the forecast verification community. Hydrol Earth Syst Sci 15:3367–3382 Frey SK, Topp E, Edge T, Fall C, Gannon V, Jokinen C, Marti R, Neumann N, Ruecker N, Wilkes G, Lapen DR (2013) Using SWAT, Bacteroidales microbial source tracking markers, and fecal indicator bacteria to predict waterborne pathogen occurrence in an agricultural watershed. Water Res 47:6326–6337 Goss M, Richards C (2008) Development of a risk-based index for source water protection planning, which supports the reduction of pathogens form agricultural activity entering water resources. J Environ Manag 87:623–632 Haan CT, Allred B, Storm DE, Sabbagh GJ, Prabhu S (1995) Statistical procedure for evaluating hydrologic/water quality models. Trans ASABE 38:725–733 Harmel RD, King KW (2005) Uncertainty in measured sediment and nutrient flux in runoff from small agricultural watersheds. Trans ASABE 48:1713–1721 Harmel RD, Smith PK (2007) Consideration of measurement uncertainty in the evaluation of goodness-of-fit in hydrologic and water quality modeling. J Hydrol 337:326–336 Harmel RD, Smith PK, Migliaccio KW (2010) Modifying goodness-of-fit indicators to incorporate both measurement and model uncertainty in model calibration and validation. Trans ASABE 55:55–63 Howden NJK, Burt TP, Mathias SA, Worrall F, Whelan MJ (2011) Modelling long-term diffuse nitrate pollution at the catchment-scale: data, parameter and epistemic uncertainty. J Hydrol 403:337–351 Huang J, Bao L, Guan Y (1994) MPN value of the coliform group measured by multi-tube method–a study of HBG programme. Journal of Jilin Institute of Chemical Technology 11(2):24–27 (in Chinese) Hyer KE, Moyer DL (2003) Patterns and sources of fecal coliform bacteria in three streams in Virginia, 1999–2000. US Geological Survey, water-resources investigations report 03–4115. U.S. Geological Survey, Washington, DC Islam M, Jennie M, Doyle MP, Jiang XP (2004) Fate of Escherichia coli O157:H7 in manure compost-amended soil and on carrots and onions grown in an environmentally controlled growth chamber. J Food Prot 67(3):574–578 Kim JW, Pachepsky YA, Shelton DR, Coppock C (2010) Effect of streambed bacteria release on E. coli concentrations: monitoring and modeling with the modified SWAT. Ecol Model 22:1592–1604 Ma H, Yang D, Tan SK, Gao B, Hu Q (2010) Impact of climate variability and human activity on streamflow decrease in the Miyun reservoir catchment. J Hydrol 389:317–324 McCrady MH (1915) The numerical interpretation of fermentation tube results. J Infect Dis 17:183–212 McDaniel RL, Soupir ML, Tuttle RB, Cervantes AE (2013) Release, dispersion, and resuspension of Escherichia coli from direct fecal deposits under controlled flows. J Am Water Resour As 49(2):319–327 Middleton JH, Ambrose A (2005) Enumeration and antibiotic resistance patterns of fecal indicator organisms isolated from migratory Canada geese (Branta canadensis). J Wildlife Dis 41(2):334–341 Moriasi D, Arnold J, Liew MWV, Bingner RL, Harmel RD, Veith TL (2007) Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans ASABE 50(3):885–900 Moyer DL, Hyer KE (2003) Use of the hydrological simulation program—FORTRAN and bacterial source tracking for development of the fecal coliform total maximum daily load (TMDL) for Christians Creek, Augusta County, Virginia. Water-resources investigations report no. 03-4162. U.S. Geological Survey, Washington, DC Nash J, Sutcliffe J (1970) River flow forecasting through conceptual models part I—a discussion of principles. J Hydrol 10:282–290 Parajuli P, Mankin KR, Barnes PL (2007) New methods in modeling source-specific bacteria at watershed scale using SWAT. In: Proceedings of the watershed management to meet water quality standards and total maximum daily load (TMDLs). ASABE Publication No. 701P0207. ASABE, St. Joseph Parajuli PB, Mankin KR, Barnes PL (2008) Applicability of targeting vegetative filter strips to abate fecal bacteria and sediment yield using SWAT. Agr Water Manage 95:1189–1200 Parajuli PB, Mankin KR, Barnes LP (2009a) Source specific fecal bacteria modeling using soil and water assessment tool model. Bioresour Technol 100:953–963 Parajuli PB, Douglas-Mankin KR, Barnes PL, Rossi CG (2009b) Fecal bacteria source characterization and sensitivity analysis of SWAT 2005. Trans ASAE 52:1847–1858 USEPA (U.S. Environmental Protection Agency) (1986) Ambient Water Quality Criteria for Bacteria—1986. Bacteriological ambient water quality criteria for marine and fresh recreational waters. Office of Research and Development, Microbiology and Toxicology Div., Cincinnati Ohio and Office of Water Regulations and Standards, Criteria and Standards Division, Washington, D.C. EPA–440/5–84–002 Whitman RL, Przybyla-Kelly K, Shively DA, Nevers MB, Byappanahalli MN (2008) Sunlight, season, snowmelt, storm, and source affect E. coli populations in an artificially ponded stream. Sci Total Environ 390:448–455 WHO/UNICEF (2000) Global water supply and sanitation assessment 2000 report (online). World Health Organization and United Nations Children’s Fund, New York WHO/UNICEF (2014) Progress on drinking water and sanitation. World Health Organization and United Nations International Children’s Emergency Fund, Geneva Wu YF (2009) Journal of animals in Heibei Province. Hebei science and technology press, Hebei (in Chinese) Xu ZX, Pang JP, Liu CM, Li JY (2009) Assessment of runoff and sediment yield in the Miyun reservoir catchment by using SWAT model. Hydrol Process 23:3619–3630 Yang Q, Tam NFY, Wong YS, Luan TG, Su WS, Lan CY et al (2008) Potential use of mangroves as constructed wetland for municipal sewage treatment in Futian, Shenzhen, China. Mar Pollut Bull 57:735–743 Yen H, Hoque YM, Harmel RD, Jeong J (2015) The impact of considering uncertainty in measured calibration/validation data during auto-calibration of hydrologic and water quality models. Stoch Environ Res Risk Assess 29:1891–1901 Zheng CC, Zhou LX (2013) Antibacterial potency of housefly larvae extract from sewage sludge through bioconversion. J Environ Sci 25(9):1897–1905