Predicting extreme value at risk: Nonparametric quantile regression with refinements from extreme value theory

Computational Statistics and Data Analysis - Tập 56 - Trang 4081-4096 - 2012
Julia Schaumburg1
1Humboldt-Universität zu Berlin, School of Business and Economics, Institute of Statistics and Econometrics, Chair of Econometrics, Spandauer Str. 1, 10178 Berlin, Germany

Tài liệu tham khảo

Balkema, 1974, Residual life time at great age, The Annals of Probability, 2, 792, 10.1214/aop/1176996548 Cai, 2002, Regression quantiles for time series, Econometric Theory, 18, 169, 10.1017/S0266466602181096 Cai, 2008, Nonparametric estimation of conditional var and expected shortfall, Journal of Econometrics, 147, 120, 10.1016/j.jeconom.2008.09.005 Chen, 2005, Nonparametric inference of value-at-risk for dependent financial returns, Journal of Financial Econometrics, 3, 227, 10.1093/jjfinec/nbi012 Chernozhukov, 2009, Improving point and interval estimates of monotone functions by rearrangement, Biometrika, 96, 559, 10.1093/biomet/asp030 Chernozhukov, 2001, Conditional value-at-risk: aspects of modelling and estimation, Empirical Economics, 26, 271, 10.1007/s001810000062 Dette, 2006, A simple nonparametric estimator of a strictly monotone regression function, Bernoulli, 12, 469, 10.3150/bj/1151525131 Drees, 2003, Extreme quantile estimation for dependent data, with applications to finance, Bernoulli, 9, 617, 10.3150/bj/1066223272 El-Arouia, 2002, On the use of the peaks over thresholds method for estimating out-of-sample quantiles, Computational Statistics and Data Analysis, 39, 453, 10.1016/S0167-9473(01)00087-1 Embrechts, 1997 Engle, 2004, Caviar: conditional autoregressive value at risk by regression quantiles, Journal of Business & Economic Statistics, 22, 367, 10.1198/073500104000000370 Fan, 1996, vol. 66 Koenker, 1978, Regression quantiles, Econometrica, 46, 33, 10.2307/1913643 Koenker, 1996, Conditional quantile estimation and inference for arch models, Econometric Theory, 12, 793, 10.1017/S0266466600007167 Kuester, 2006, Value-at-risk prediction: a comparison of alternative strategies, Journal of Financial Econometrics, 4, 53, 10.1093/jjfinec/nbj002 Kupiec, 1995, Techniques for verifying the accuracy of risk measurement models, Journal of Derivatives, 73, 10.3905/jod.1995.407942 Li, 2007 MacDonald, 2011, A flexible extreme value mixture model, Computational Statistics and Data Analysis, 55, 2137, 10.1016/j.csda.2011.01.005 Manganelli, S., Engle, R.F., 2001. Value at risk models in finance. In: ECB Working Paper Series Working Paper No. 75. McNeil, 2000, Estimation of tail-related risk measures for heteroscedastic financial time series: an extreme value approach, Journal of Empirical Finance, 7, 271, 10.1016/S0927-5398(00)00012-8 McNeil, 2005 Nieto, M.R., Ruiz, E., 2008. Measuring financial risk: comparison of alternative procedures to measure var and es. In: Universidad Carlos III de Madrid Working Paper No. 08-73. Pickands, 1975, Statistical inference using extreme order statistics, The Annals of Statistics, 3, 119, 10.1214/aos/1176343003 Smith, 1987, Estimating the tails of probability distributions, The Annals of Statistics, 15, 1174, 10.1214/aos/1176350499 Taylor, 2008, Using exponentially weighted quantile regression to estimate value at risk and expected shortfall, Journal of Financial Econometrics, 6, 382, 10.1093/jjfinec/nbn007 Wu, 2007, Kernel conditional quantile estimation for stationary processes with application to value at risk, Journal of Financial Econometrics, 1 Yu, 1997, A comparison of local constant and local linear regression quantile estimators, Computational Statistics and Data Analysis, 25, 159, 10.1016/S0167-9473(97)00006-6 Yu, 1998, Local linear quantile regression, Journal of the American Statistical Association, 93, 228, 10.1080/01621459.1998.10474104