Predicting energy futures high-frequency volatility using technical indicators: The role of interaction

Energy Economics - Tập 119 - Trang 106533 - 2023
Xue Gong1, Xin Ye2, Weiguo Zhang3, Yue Zhang4
1School of Economics and Management, Nanjing University of Science and Technology, Nanjing, China
2School of Mathematics and Statistics, Wuhan University, Wuhan, China
3College of Management, Shenzhen University, Shenzhen, China
4Shenzhen Audencia Financial Technology Institute, Shenzhen University, Shenzhen, China

Tài liệu tham khảo

Aiolfi, 2006, Persistence in forecasting performance and conditional combination strategies, J. Econometrics, 135, 31, 10.1016/j.jeconom.2005.07.015 Andersen, 2001, The distribution of realized stock return volatility, J. Financ. Econ., 61, 43, 10.1016/S0304-405X(01)00055-1 Andersen, 2011, A reduced form framework for modeling volatility of speculative prices based on realized variation measures, J. Econometrics, 160, 176, 10.1016/j.jeconom.2010.03.029 Baker, 2016, Measuring economic policy uncertainty, Q. J. Econ., 131, 1593, 10.1093/qje/qjw024 Barut, 2016, Conditional sure independence screening, J. Amer. Statist. Assoc., 111, 1266, 10.1080/01621459.2015.1092974 Bates, 1969, The combination of forecasts, J. Oper. Res. Soc., 20, 451, 10.1057/jors.1969.103 Borovkova, 2015, News, volatility and jumps: The case of natural gas futures, Quant. Finance, 15, 1217, 10.1080/14697688.2014.986513 Brock, 1992, Simple technical trading rules and the stochastic properties of stock returns, J. Finance, 47, 1731, 10.1111/j.1540-6261.1992.tb04681.x Campbell, 2008, Predicting excess stock returns out of sample: Can anything beat the historical average?, Rev. Financ. Stud., 21, 1509, 10.1093/rfs/hhm055 Catania, 2020, Forecasting volatility with time-varying leverage and volatility of volatility effects, Int. J. Forecast., 36, 1301, 10.1016/j.ijforecast.2020.01.003 Cheung, 1995, Lag order and critical values of the augmented Dickey–Fuller test, J. Bus. Econom. Statist., 13, 277 Christiansen, 2012, A comprehensive look at financial volatility prediction by economic variables, J. Appl. Econometrics, 27, 956, 10.1002/jae.2298 Clark, 2007, Approximately normal tests for equal predictive accuracy in nested models, J. Econometrics, 138, 291, 10.1016/j.jeconom.2006.05.023 Cochrane, 2005, Financial markets and the real economy, 1 Conrad, 1998, An anatomy of trading strategies, Rev. Financ. Stud., 11, 489, 10.1093/rfs/11.3.489 Corsi, 2009, A simple approximate long-memory model of realized volatility, J. Financ. Econom., 7, 174 Cortina, 1993, Interaction, nonlinearity, and multicollinearity: Implications for multiple regression, J. Manag., 19, 915 Da, 2011, In search of attention, J. Finance, 66, 1461, 10.1111/j.1540-6261.2011.01679.x Das, 2007, Yahoo! for amazon: Sentiment extraction from small talk on the Web, Manage. Sci., 53, 1375, 10.1287/mnsc.1070.0704 Deeney, 2015, Sentiment in oil markets, Int. Rev. Financ. Anal., 39, 179, 10.1016/j.irfa.2015.01.005 Degiannakis, 2022, Oil price volatility forecasts: What do investors need to know?, J. Int. Money Finance, 123, 10.1016/j.jimonfin.2021.102594 Ergen, 2016, Asymmetric impacts of fundamentals on the natural gas futures volatility: An augmented GARCH approach, Energy Econ., 56, 64, 10.1016/j.eneco.2016.02.022 Fan, 2008, Sure independence screening for ultrahigh dimensional feature space, J. R. Stat. Soc. Ser. B Stat. Methodol., 70, 849, 10.1111/j.1467-9868.2008.00674.x Gong, 2022, Investor sentiment and stock volatility: New evidence, Int. Rev. Financ. Anal., 80, 10.1016/j.irfa.2022.102028 Gong, 2022, Uncertainty index and stock volatility prediction: evidence from international markets, Financial Innov., 8, 1, 10.1186/s40854-022-00361-6 Gu, 2020, Empirical asset pricing via machine learning, Rev. Financ. Stud., 33, 2223, 10.1093/rfs/hhaa009 Hansen, 2011, The model confidence set, Econometrica, 79, 453, 10.3982/ECTA5771 Hargens, 2009, Product-variable models of interaction effects and causal mechanisms, Soc. Sci. Res., 38, 19, 10.1016/j.ssresearch.2008.05.003 He, 2021, Forecasting crude oil prices: A scaled PCA approach, Energy Econ., 97, 10.1016/j.eneco.2021.105189 Hong, 1999, A unified theory of underreaction, momentum trading, and overreaction in asset markets, J. Finance, 54, 2143, 10.1111/0022-1082.00184 Huang, 2015, Investor sentiment aligned: A powerful predictor of stock returns, Rev. Financ. Stud., 28, 791, 10.1093/rfs/hhu080 Hudson, 2021, Technical trading and cryptocurrencies, Ann. Oper. Res., 297, 191, 10.1007/s10479-019-03357-1 Jarque, 1987, A test for normality of observations and regression residuals, Internat. Statist. Rev., 55, 163, 10.2307/1403192 Kelly, 2015, The three-pass regression filter: A new approach to forecasting using many predictors, J. Econometrics, 186, 294, 10.1016/j.jeconom.2015.02.011 Li, 2019, Investor attention and crude oil prices: Evidence from nonlinear Granger causality tests, Energy Econ., 84, 10.1016/j.eneco.2019.104494 Lin, 2018, Forecasting corporate bond returns with a large set of predictors: An iterated combination approach, Manage. Sci., 64, 4218, 10.1287/mnsc.2017.2734 Liu, 2020, Forecasting stock market volatility: The role of technical variables, Econ. Model., 84, 55, 10.1016/j.econmod.2019.03.007 Neely, 2014, Forecasting the equity risk premium: The role of technical indicators, Manage. Sci., 60, 1772, 10.1287/mnsc.2013.1838 Newey, 1987, A simple, positive semi-definite, heteroskedasticity and autocorrelation consistent covariance matrix, Econometrica, 55, 703, 10.2307/1913610 Panopoulou, 2019, The role of technical indicators in exchange rate forecasting, J. Empir. Financ., 53, 197, 10.1016/j.jempfin.2019.07.004 Paye, 2012, ‘Déjà vol’: Predictive regressions for aggregate stock market volatility using macroeconomic variables, J. Financ. Econ., 106, 527, 10.1016/j.jfineco.2012.06.005 Qadan, 2018, Investor sentiment and the price of oil, Energy Econ., 69, 42, 10.1016/j.eneco.2017.10.035 Saunders, 1956, Moderator variables in prediction, Educ. Psychol. Meas., 16, 209, 10.1177/001316445601600205 Sévi, 2014, Forecasting the volatility of crude oil futures using intraday data, European J. Oper. Res., 235, 643, 10.1016/j.ejor.2014.01.019 Stambaugh, 2012, The short of it: Investor sentiment and anomalies, J. Financ. Econ., 104, 288, 10.1016/j.jfineco.2011.12.001 Tibshirani, 1996, Regression shrinkage and selection via the lasso, J. R. Stat. Soc. Ser. B Stat. Methodol., 58, 267 Timmermann, 2006, Chapter 4 forecast combinations, Handb. Econ. Forecast., 1, 135, 10.1016/S1574-0706(05)01004-9 Wang, 2020, Forecasting commodity prices out-of-sample: Can technical indicators help?, Int. J. Forecast., 36, 666, 10.1016/j.ijforecast.2019.08.004 Wang, 2016, Forecasting realized volatility in a changing world: A dynamic model averaging approach, J. Bank. Financ., 64, 136, 10.1016/j.jbankfin.2015.12.010 Weiss, 2018, Forecast combinations in R using the ForecastComb package, R Journal, 10, 10.32614/RJ-2018-052 Welch, 2008, A comprehensive look at the empirical performance of equity premium prediction, Rev. Financ. Stud., 21, 1455, 10.1093/rfs/hhm014 Xiu, 2010, Quasi-maximum likelihood estimation of volatility with high frequency data, J. Econometrics, 159, 235, 10.1016/j.jeconom.2010.07.002 Yang, 2019, Volatility forecasting of crude oil futures: The role of investor sentiment and leverage effect, Resour. Policy, 61, 548, 10.1016/j.resourpol.2018.05.012 Yin, 2016, Predicting the oil prices: Do technical indicators help?, Energy Econ., 56, 338, 10.1016/j.eneco.2016.03.017 Zhang, 2021, Predicting stock market volatility based on textual sentiment: A nonlinear analysis, J. Forecast., 40, 1479, 10.1002/for.2777 Zhang, 2019, Forecasting crude oil prices with a large set of predictors: Can LASSO select powerful predictors?, J. Empir. Financ., 54, 97, 10.1016/j.jempfin.2019.08.007 Zhang, 2011, The dynamic influence of advanced stock market risk on international crude oil returns: An empirical analysis, Quant. Finance, 11, 967, 10.1080/14697688.2010.538712 Zhao, 2021, A novel method for online real-time forecasting of crude oil price, Appl. Energy, 303, 10.1016/j.apenergy.2021.117588 Zivot, 2003, Rolling analysis of time series, 299 Zou, 2005, Regularization and variable selection via the elastic net, J. R. Stat. Soc. Ser. B Stat. Methodol., 67, 301, 10.1111/j.1467-9868.2005.00503.x