Predicting distribution and range dynamics of Trillium govanianum under climate change and growing human footprint for targeted conservation

Irfan Iqbal Sofi1, Seema Verma2, Bipin Charles3, Aijaz Hassan Ganie4, Namrata Sharma2, Manzoor Ahmad Shah1
1Department of Botany, University of Kashmir, Srinagar, Jammu and Kashmir, 19006, India
2Department of Botany, University of Jammu, Jammu Tawi, Jammu and Kashmir, 18006, India
3Institute for Biodiversity, Conservation and Training, 5, 7th Main Road, Shankar Nagar, Bangaluru, 560096, India
4Department of Botany, University of Ladakh, Kargil Campus, Kargil, Ladakh, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

Adhikari P, Shin MS, Jeon JY et al (2018) Potential impact of climate change on the species richness of subalpine plant species in the mountain national parks of South Korea. J Ecol Environ 42:36. https://doi.org/10.1186/s41610-018-0095-y

Akhter S, McDonald M, Breugel P, Sohel S, Kjaer E, Mariott R (2017) Habitat distribution modelling to identify areas of high conservation value under climate change for Mangifera sylvatica Roxb. of Bangladesh. Land Use Policy 60:223–232. https://doi.org/10.1016/j.landusepol.2016.10.027

Algar AC, Kharouba HM, Young ER, Kerr JT (2009) Predicting the future of species diversity: macroecological theory, climate change, and direct tests of alternative forecasting methods. Ecography 32(1):22–33. https://doi.org/10.1111/j.1600-0587.2009.05832.x

Araújo MB, Alagador D, Cabeza M, Nogués-Bravo D, Thuiller W (2011) Climate change threatens European conservation areas. Ecol Lett 14(5):484–492. https://doi.org/10.1111/j.1461-0248.2011.01610.x

Bali R, Agarwal KK, Ali SN, Srivastava P (2011) Is the recessional pattern of Himalayan glaciers suggestive of anthropogenically induced global warming? Arab J Geosci 4(7):1087–1093

Bellard C, Leclerc C, Leroy B, Bakkenes M, Veloz S, Thuiller W, Courchamp F (2014) Vulnerability of biodiversity hotspots to global change. Glob Ecol Biogeogr 23(12):1376–1386

Bertrand R, Lenoir J, Piedallu C (2011) Changes in plant community composition lag behind climate warming in lowland forests. Nature 479(7374):517–520. https://doi.org/10.1038/nature10548

Bosso L, Rebelo H, Garonna AP, Russo D (2013) Modelling geographic distribution and detecting conservation gaps in Italy for the threatened beetle Rosalia alpina. J Nat Conserv 21:72–80. https://doi.org/10.1016/j.jnc.2012.10.003

Bowler DE, Bjorkman AD, Dornelas M et al (2020) Mapping human pressures on biodiversity across the planet uncovers anthropogenic threat complexes. People Nat 2(2):380–394. https://doi.org/10.1002/pan3.10071

Brashares JS, Arcese P, Sam MK (2001) Human demography and reserve size predict wildlife extinction in West Africa. Proc R Soc Lond: Ser B Biol Sci 268:2473–2478. https://doi.org/10.1098/rspb.2001.1815

Brown JL (2014) SDM toolbox: a python-based GIS toolkit for landscape genetic, biogeographic and species distribution model analyses. Methods Ecol Evol 5(7):694–700. https://doi.org/10.1111/2041-210X.12200

Butchart SHM, Walpole M, Collen B et al (2010) Global biodiversity: indicators of recent declines. Science 328:1164–1168. https://doi.org/10.1126/science.1187512

Carrasco J, Price V, Tulloch V, Mills M (2020) Selecting priority areas for the conservation of endemic trees species and their ecosystems in Madagascar considering both conservation value and vulnerability to human pressure. Biodivers Conserv 29(6):1841–1854. https://doi.org/10.1007/s10531-020-01947-1

Carroll C, Dunk JR, Moilanen A (2010) Optimizing resiliency of reserve networks to climate change: multispecies conservation planning in the Pacific Northwest, USA. Glob Change Biol 16(3):891–904. https://doi.org/10.1111/j.1365-2486.2009.01965.x

Chaudhari P, Bawa KS (2011) Local perceptions of climate change validated by scientific evidence in the Himalayas. Biol Lett 7:767–770. https://doi.org/10.1098/rsbl.2011.0269

Chauhan HK, Bisht AK, Bhatt ID, Bhatt A, Gallacher D, Santo A (2017) Ecological observations and altered indigenous harvesting practices of Trillium govanianum (Melanthiaceae) in Indian Himalayas. J Ethnopharmacol 213(2017):302–310. https://doi.org/10.1016/j.jep.2017.11.003

Chauhan HK, Bisht AK, Bhatt ID, Bhatt A, Gallacher D (2019) Trillium–toward sustainable utilization of a biologically distinct genus valued for traditional medicine. Bot Rev 85(3):252–272. https://doi.org/10.1007/s12229-019-09211-0

Chen IC, Hill JK, Ohlemüller R, Roy DB, Thomas CD (2011) Rapid range shifts of species associated with high levels of climate warming. Science 333(6045):1024–1026. https://doi.org/10.1126/science.1206432

Chettri N, Sharma E, Shakya B, Thapa R, Bajracharya B, Uddin K, Oli KP, Dhrupad C (2018) Climate change impact and vulnerability in the Eastern Himalayas—technical report 2. Nakul - ICIMOD, Kathmandu, Nepal. http://www.indiaenvironmentportal.org.in/files/biodiversity_in_the_eastern_himalayas.pdf. Accessed 10 July 2021

Chettri N, Tsering K, Shrestha A, Sharma E (2018) Ecological vulnerability to climate change in the mountains: a case study from the Eastern Himalayas. Google Scholar, 707–721

Chitale V, Behera MD (2019) How will forest fires impact the distribution of endemic plants in the Himalayan biodiversity hotspot? Biodivers Conserv 28:2259–2273. https://doi.org/10.1007/s10531-019-01733-8

Cincotta RP, Engelman R (2000) Nature’s place: human population density and the future of biological diversity. Population Action International, Washington (DC)

Cuena-Lombraña A, Fois M, Fenu G, Cogoni D, Bacchetta G (2018) The impact of climatic variations on the reproductive success of Gentiana lutea L. in a Mediterranean mountain area. Int J Biometeorol 62(7):1283–1295. https://doi.org/10.1007/s00484-018-1533-3

Da Re D, Tordoni E, De Pascalis F, Negrín-Pérez Z, Fernández-Palacios JM, Arévalo JR, Rocchini D, Medina FM, Otto R, Arlé E, Bacaro G (2020) Invasive fountain grass (Pennisetum setaceum (Forssk.) Chiov.) increases its potential area of distribution in Tenerife island under future climatic scenarios. Plant Ecol 221(10):867–882. https://doi.org/10.1007/s11258-020-01046-9

Davies ZG, Wilson RJ, Coles S, Thomas CD (2006) Changing habitat associations of a thermally constrained species, the silver-spotted skipper butterfly, in response to climate warming. J Anim Ecol 75(1):247–256. https://doi.org/10.1111/j.1365-2656.2006.01044.x

Dawson TP, Jackson ST, House JI, Prentice IC, Mace GM (2011) Beyond predictions: biodiversity conservation in a changing climate. Science 332(6025):53–58. https://doi.org/10.1126/science.1200303

Deb JC, Phinn S, Butt N, McAlpine CA (2017) The impact of climate change on the distribution of two threatened Dipterocarp trees. Ecol Evol 7(7):2238–2248. https://doi.org/10.1002/ece3.2846

Dhyani P, Sharma B, Singh P, Masand M, Seth R, Sharma RK (2020) Genome-wide discovery of microsatellite markers and population genetic diversity inferences revealed high anthropogenic pressure on endemic populations of Trillium govanianum. Ind Crops Prod 154:112698. https://doi.org/10.1016/j.indcrop.2020.112698

Di Marco M, Venter O, Possingham HP, Watson JEM (2018) Changes in human footprint drive changes in species extinction risk. Nat Commun 9:4621. https://doi.org/10.1038/s41467-018-07049-5

Di Minin E, Veach V, Lehtomäki J, Montesino Pouzols F, Moilanen A (2014) A quick introduction to Zonation. University of Helsinki, Helsinki, Finland

Dormann CF, Elith J, Bacher S, Buchmann C, Carl G (2013) Collinearity: a review of methods to deal with it and a simulation study evaluating their performance. Ecography 36:27–46. https://doi.org/10.1111/j.1600-0587.2012.07348.x

Dubuis A, Pottier J, Rion V, Pellissier L, Theurillat JP, Guisan A (2011) Predicting spatial patterns of plant species richness: a comparison of direct macroecological and species stacking modelling approaches. Divers Distrib 17(6):1122–1131. https://doi.org/10.1111/j.1472-4642.2011.00792.x

Dullinger S, Essl F, Rabitsch W et al (2013) Europe’s other debt crisis caused by the long legacy of future extinctions. PNAS 110(18):7342–7347

Elith J, Leathwick JR (2009) Species distribution models: ecological explanation and prediction across space and time. Annu Rev Ecol Evol Syst 40:677–697. https://doi.org/10.1146/annurev.ecolsys.110308.120159

Elith J, Phillips SJ, Hastie T, Dudík M, Chee YE, Yates CJ (2011) A statistical explanation of maxent for ecologists. Divers Distrib 17(1):43–57. https://doi.org/10.1111/j.1472-4642.2010.00725.x

Fawzy S, Osman AI, Doran J, Rooney DW (2020) Strategies for mitigation of climate change: a review. Environ Chem Lett. https://doi.org/10.1007/s10311-020-01059-w

Feng G, Mao L, Benito BM, Swenson NG, Svenning JC (2017) Historical anthropogenic footprints in the distribution of threatened plants in China. Biol Conserv 210:3–8. https://doi.org/10.1016/j.biocon.2016.05.038

Ferrier S, Ninan KN, Leadley P et al (2016) The methodological assessment report on scenarios and models of biodiversity and ecosystem services. Secretariat of the Intergovernmental Platform for Biodiversity and Ecosystem Services, Bonn

Fielding AH, Bell JF (1997) A review of methods for the assessment of prediction errors in conservation presence/absence models. Environ Conserv 24:38–49

Fischer J, Lindenmayer DB (2007) Landscape modification and habitat fragmentation: a synthesis. Glob Ecol Biogeogr 16(3):265–280. https://doi.org/10.1111/j.1466-8238.2007.00287.x

Fois M, Cuena-Lombraña A, Fenu G, Bacchetta G (2018) Using species distribution models at local scale to guide the search of poorly known species: review, methodological issues and future directions. Ecol Model 385:124–132. https://doi.org/10.1016/j.ecolmodel.2018.07.018

Ganie AH, Tali BA, Khuroo AA, Reshi ZA, Nawchoo IA (2019) Impact assessment of anthropogenic threats to high-valued medicinal plants of Kashmir Himalaya, India. J Nat Conserv 50:125715

Gong M, Guan T, Hou M, Liu G, Zhou T (2017) Hopes and challenges for giant panda conservation under climate change in the Qinling Mountains of China. Ecol Evol 7(2):596–605. https://doi.org/10.1002/ece3.2650

Guisan A, Thuiller W (2005) Predicting species distribution: offering more than simple habitat models. Ecol Lett 8(9):993–1009. https://doi.org/10.1111/j.1461-0248.2005.00792.x

Guisan A, Tingley R, Baumgartner JB et al (2013) Predicting species distributions for conservation decisions. Ecol Lett 16:1424–1435. https://doi.org/10.1111/ele.12189

Hamid M, Khuroo AA, Charles B, Ahmad R, Singh CP, Aravind NA (2019) Impact of climate change on the distribution range and niche dynamics of Himalayan birch, a typical treeline species in Himalayas. Biodivers Conserv 28(8):2345–2370. https://doi.org/10.1007/s10531-018-1641-8

Hansen J, Sato M, Ruedy R, Lo K, Lea DW, Medinaelizade M (2006) Global temperature change. Proc Natl Acad Sci USA 103(39):14288–14293. https://doi.org/10.1073/pnas.0606291103

Hansen MC, Potapov PV, Moore R et al (2013) High-resolution global maps of 21st-century forest cover change. Science 342(6160):850–853. https://doi.org/10.1126/science.1244693

Helmus MR, Mahler DL, Losos JB (2014) Island biogeography of the Anthropocene. Nature 513:543–546. https://doi.org/10.1038/nature13739

Hijmans RJ, Graham CH (2006) The ability of climate envelope models to predict the effect of climate change on species distributions. Glob Change Biol 12(12):2272–2281. https://doi.org/10.1111/j.1365-2486.2006.01256.x

Hijmans RJ, Cruz M, Rrojas E, Guarino L (2001) DIVA-GIS, version 1.4. A geographic information system for the management and analysis of genetic resources data. Plant Genet Resour Newsl 127:15–19

Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25(15):1965–1978

Hu R, Gu Y, Luo M, Lu Z, Wei M, Zhong J (2020) Shifts in bird ranges and conservation priorities in China under climate change. PLoS ONE 15(10):e0240225. https://doi.org/10.1371/journal.pone.0240225

Jantz SM, Barker B, Brooks TM et al (2015) Future habitat loss and extinctions driven by land-use change in biodiversity hotspots under four scenarios of climate-change mitigation. Conserv Biol 29:1122–1131. https://doi.org/10.1111/cobi.12549

Jones KR, Venter O, Fuller RA, Allan JR, Maxwell SL, Negret PJ, Watson JE (2018) One-third of global protected land is under intense human pressure. Science 360(6390):788–791. https://doi.org/10.1126/science.aap9565

Joshi G, Negi GCS (2011) Quantification and valuation of forest ecosystem services in the western Himalayan region, India. Int J Biodivers Sci Ecosyst Serv Manage 7(1):2–11

Kaky E, Gilbert F (2016) Using species distribution models to assess the importance of Egypt’s protected areas for the conservation of medicinal plants. J Arid Environ 135:140–146. https://doi.org/10.1016/j.jaridenv.2016.09.001

Kaky E, Gilbert F (2020) Allowing for human socioeconomic impacts in the conservation of plants under climate change. Plant Biosyst 3:295–305. https://doi.org/10.1080/11263504.2019.1610109

Kelly AE, Goulden ML (2008) Rapid shifts in plant distribution with recent climate change. Proc Natl Acad Sci USA 105:11823–11826. https://doi.org/10.1073/pnas.0802891105

Keys PW, Barnes EA, Carter NH (2021) A machine-learning approach to human footprint index estimation with applications to sustainable development. Environ Res Lett 16(4):044061. https://doi.org/10.1088/1748-9326/abe00a

Laurance WF, Goosem M, Laurance SGW (2009) Impacts of roads and linear clearings on tropical forests. Trends Ecol Evol 24:659–669. https://doi.org/10.1016/j.tree.2009.06.009

Li R, Xu M, Wong MHG, Qiu S, Sheng Q, Li X, Song Z (2015) Climate change-induced decline in bamboo habitats and species diversity: implications for giant panda conservation. Divers Distrib 21(4):379–391. https://doi.org/10.1111/ddi.12284

Li S, He F, Zhang X, Zhou T (2019) Evaluation of global historical land use scenarios based on regional datasets on the Qinghai-Tibet area. Sci Total Environ 657:1615–1628

Liu C, Berry PM, Dawson TP, Pearson RG (2005) Selecting thresholds of occurrence in the prediction of species distributions. Ecography 28(3):385–393. https://doi.org/10.1111/j.0906-7590.2005.03957.x

Loarie SR, Carter BE, Hayhoe K, McMahon S, Moe R, Knight CA, Ackerly DD (2008) Climate change and the future of California’s endemic flora. PLoS One 3(6):e2502. https://doi.org/10.1371/journal.pone.0002502

Ma B, Sun J (2018) Predicting the distribution of Stipa purpurea across the Tibetan Plateau via the MaxEnt model. BMC Ecol. https://doi.org/10.1186/s12898-018-0165-0

Manish K, Pandit MK (2019) Identifying conservation priorities for plant species in the Himalaya in current and future climates: a case study from Sikkim Himalaya, India. Biol Conserv 233:176–184. https://doi.org/10.1016/j.biocon.2019.02.036

Manzoor SA, Geofrey G, Martin L (2018) Species distribution model transferability and model grain size–finer may not always be better. Sci Rep 8(1):7168

Marchese C (2015) Biodiversity hotspots: a shortcut for a more complicated concept. Glob Ecol Conserv 3:297–309. https://doi.org/10.1016/j.gecco.2014.12.008

Mariani M, Fletcher MS, Haberle S, Chin H, Zawadzki A, Jacobsen G (2019) Climate change reduces resilience to fire in subalpine rainforests. Glob Change Biol 25(6):2030–2042. https://doi.org/10.1111/gcb.14609

Maxwell AE, Warner TA, Vanderbilt BC, Ramezan CA (2017) Land cover classification and feature extraction from National Agriculture Imagery Program (NAIP) orthoimagery: a review. Photogramm Eng Remote Sens 83(11):737–747

Mazor T, Possingham HP, Edelist D, Brokovich E, Kark S (2014) The crowded sea: incorporating multiple marine activities in conservation plans can significantly alter spatial priorities. PLoS ONE 9(8):e104489. https://doi.org/10.1371/journal.pone.0104489

Michalak JL, Lawler JJ, Roberts DR, Carroll C (2018) Distribution and protection of climatic refugia in North America. Conserv Biol 32:1414–1425. https://doi.org/10.1111/cobi.13130

Miraldo A, Li S, Borregaard MK, Flórez-Rodríguez A et al (2016) An Anthropocene map of genetic diversity. Science 353(6307):1532–1535

Mittermeier RA, Hawkins F, Rajaobelina S, Langrand O (2005) Wilderness conservation in a biodiversity hotspot. Int J Wilderness 11:42–45

Moilanen A (2007) Landscape zonation, benefit functions and target-based planning: unifying reserve selection strategies. Biol Conserv 134(4):571–579. https://doi.org/10.1016/j.biocon.2006.09.008

Moilanen A, Franco AM, Early RI, Fox R, Wintle B, Thomas CD (2005) Prioritizing multiple-use landscapes for conservation: methods for large multi-species planning problems. Proc R Soc B 272:1885–1891. https://doi.org/10.1098/rspb.2005.3164

Moss RH, Edmond JA, Hibbard KA et al (2010) The next generation of scenarios for climate change research and assessment. Nature 463(7282):747–775. https://doi.org/10.1038/nature08823

Norberg A, Abrego N, Blanchet FG et al (2019) A comprehensive evaluation of predictive performance of 33 species distribution models at species and community levels. Ecol Monogr 89:e01370. https://doi.org/10.1002/ecm.1370

OECD (Organisation for Economic Co-operation and Development) (2019) The post-2020 biodiversity framework: targets, indicators and measurability implications at global and national level. Interim report, november version. OECD, Montreal, Canada

Ordonez A, Martinuzzi S, Radelo VC (2014) Combined speeds of climate and land-use change of the conterminous US until 2050. Nat Clim Change 4:1–6. https://doi.org/10.1038/NCLIMATE2337

Patrizzi NS, Dobrovolski R (2018) Integrating climate change and human impacts into marine spatial planning: a case study of threatened starfish species in Brazil. Ocean Coast Manage 161:177–188. https://doi.org/10.1016/j.ocecoaman.2018.05.003

Pearman PB, Guisan A, Broennimann O, Randin CF (2007) Niche dynamics in space and time. Trends Ecol Evol 23(3):149–158. https://doi.org/10.1016/j.tree.2007.11.005

Pearson RG, Raxworthy CJ, Nakamura M, Peterson AT (2007) Predicting species distributions from small numbers of occurrence records: a test case using cryptic geckos in Madagascar. J Biogeogr 34:102–117. https://doi.org/10.1111/j.1365-2699.2006.01594.x

Peterson AT, Soberón J, Pearson RG et al (2011) Ecological niches and geographic distributions. Princeton University Press, Princeton

Phillips SJ, Anderson RP, Schapire RE (2006) Maximum entropy modeling of species geographic distributions. Ecol Model 190(3):231–259

Procheş Ş, Ramdhani S (2012) The world’s zoogeographical regions confirmed by cross-taxon analyses. Bioscience 62(3):260–270. https://doi.org/10.1525/bio.2012.62.3.7

Quesada BR (2019) IPBES global assessment on biodiversity and ecosystem services-chapter 4. Plausible futures of nature, its contributions to people and their good quality of life. In IPBES Global Assessment on Biodiversity and Ecosystem Services-Chapter 4. Plausible futures of nature, its contributions to people and their good quality of life, pp. 1–265

Quinn JE, Cook EK, Gauthier N (2021) Patterns of vertebrate richness across global anthromes: prioritizing conservation beyond biomes and ecoregions. Glob Ecol Conserv 27:e01591

Rahman SU, Ismail M, Shah MR, Iriti M, Shahid M (2015) GC/MS analysis, free radical scavenging, anticancer and β-glucuronidase inhibitory activities of Trillium govanianum rhizome. Bangladesh J Pharmacol 10:577–583. https://doi.org/10.3329/bjp.v10i3.23446

Riggio J, Baillie JE, Brumby S (2020) Global human influence maps reveal clear opportunities in conserving earth’s remaining intact terrestrial ecosystems. Glob Change Biol 26(8):344–4356. https://doi.org/10.1111/gcb.15109

Robinne FN, Stadt JJ, Bater CW, Nock CA, Macdonald SE, Nielsen SE (2020) Application of the conservation planning tool zonation to inform retention planning in the boreal forest of Western Canada. Front Ecol Evol 8:584291. https://doi.org/10.3389/fevo.2020.584291

Román-Palacios C, Wiens JJ (2020) Recent responses to climate change reveal the drivers of species extinction and survival. Proc Natl Acad Sci USA 117(8):4211–4217. https://doi.org/10.1073/pnas.1913007117

Santangeli A, Rajasärkkä A, Lehikoinen A (2016) Effects of high latitude protected areas on bird communities under rapid climate change. Glob Change Biol 23(6):2241–2249. https://doi.org/10.1111/gcb.13518

Shcheglovitova M, Anderson RP (2013) Estimating optimal complexity for ecological niche models: a jackknife approach for species with small sample sizes. Ecol Model 269:9–17. https://doi.org/10.1016/j.ecolmodel.2013.08.011

Shrestha UB, Gautam S, Bawa KS (2012) Widespread climate change in the Himalayas and associated changes in local ecosystems. PloS One 7(5):e36741

Silvius JE (1984) The human pressure index: an integrative approach to landscape ecology. Am Biol Teach 46(6):334–337. https://doi.org/10.2307/4447861

Sobral-Souza T, Santos JP, Maldaner ME, Lima-Ribeiro MS, Ribeiro MC (2021) EcoLand: a multiscale niche modelling framework to improve predictions on biodiversity and conservation. PECON. https://doi.org/10.1016/j.pecon.2021.03.008 (in press)

Swets JA (1998) Measuring the accuracy of diagnostic systems. Science 240:1285–1293. https://doi.org/10.1126/science.3287615

Telwala Y, Brook BW, Manish K, Pandit MK (2013) Climate-induced elevational range shifts and increase in plant species richness in a Himalayan biodiversity epicentre. PLoS ONE 8(2):e57103. https://doi.org/10.1371/journal.pone.0057103

Thomas C, Cameron A, Green R et al (2004) Extinction risk from climate change. Nature 427:145–148. https://doi.org/10.1038/nature02121

Venter O, Sanderson EW, Magrach A et al (2016) Sixteen years of change in the global terrestrial human footprint and implications for biodiversity conservation. Nat Commun 7(1):1–11. https://doi.org/10.1038/ncomms12558

Verma M, Symes WS, Watson JE, Jones KR, Allan JR, Venter O, Rheindt FE, Edwards DP, Carrasco LR (2020) Severe human pressures in the Sundaland biodiversity hotspot. Conserv Sci Pract 2(3):e169

Vidyarthi S, Samant SS, Sharma P (2013) Dwindling status of Trillium govanianum Wall. ex D. Don-a case study from Kullu district of Himachal Pradesh, India. J Med Plant Res 7(8):392–397

Wang YS, Xie BY, Wan FH, Xiao QM, Dai LY (2007) The potential geographic distribution of Radopholus similis in China. Agric Sci China 6(12):1444–1449. https://doi.org/10.1016/S1671-2927(08)60006-1

Watson JEM, Venter O (2019) Mapping the continuum of humanity’s footprint on land. One Earth 1(2):175–180. https://doi.org/10.1016/j.oneear.2019.09.004

Williams BA, Venter O, Allan JR, Atkinson SC, Rehbein JA, Ward M, Di Marco M, Grantham HS, Ervin J, Goetz SJ, Hansen AJ (2020) Change in terrestrial human footprint drives continued loss of intact ecosystems. One Earth 3(3):371–382

Woodroffe R, Ginsberg JR (1998) Edge effects and the extinction of populations inside protected areas. Science 280(5372):2126–2128. https://doi.org/10.1126/science.280.5372.2126

Xu MH, Xue X (2013) Analysis on the effects of climate warming on growth and phenology of alpine plants. J Arid Land Resour Environ 27:137–141

Yang L, Chen M, Challender DW (2018) Historical data for conservation: reconstructing range changes of Chinese pangolin (Manis pentadactyla) in eastern China (1970–2016). Proc R Soc B-Biol Sci 285(1885):20181084. https://doi.org/10.1098/rspb.2018.1084

Yi YJ, Cheng X, Yang ZF, Zhang SH (2016) Maxent modeling for predicting the potential distribution of endangered medicinal plant (H. riparia Lour) in Yunnan China. Ecol Eng 92:260–269. https://doi.org/10.1016/j.ecoleng.2016.04.010

Zhang Z, He JS, Li J, Tang Z (2015) Distribution and conservation of threatened plants in China. Biol Conserv 192:454–460. https://doi.org/10.1016/j.biocon.2015.10.019

Zimmermann NE, Edwards TC, Graham CH, Pearman PB, Svenning JC (2010) New trends in species distribution modelling. Ecography 33:985–989. https://doi.org/10.1111/j.1600-0587.2010.06953.x

Zomer RJ, Xu J, Wang M (2015) Projected impact of climate change on the effectiveness of the existing protected area network for biodiversity conservation within Yunnan Province, China. Biol Conserv 184:335–345. https://doi.org/10.1016/j.biocon.2015.01.031