Predicting ammonia volatilization after field application of swine slurry: DNDC model development

Agriculture, Ecosystems & Environment - Tập 219 - Trang 179-189 - 2016
Katelyn A. Congreves1, Brian Grant1, B. Dutta1, Ward Smith1, Martin H. Chantigny2, Philippe Rochette2, P. L. de Freitas1
1Eastern Cereal and Oilseed Research Centre, Agriculture and Agri-Food Canada, 960 Carling Ave., Ottawa, ON, K1A 0C6, Canada
2Soils and Crops Research and Development Centre, Agriculture and Agri-Food Canada, 2560 Hochelaga Blvd., Sainte-Foy, QC G1 V 2J3, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agriculture and Agri-Food Canada, 2012. Environmental Indicators. Available at http://www.ec.gc.ca/indicateurs-indicators/default.asp?lang=en&n=FE578F55-1.

Arogo, 1999, Mass transfer coefficient of ammonia in liquid swine manure and aqueous solutions, J. Agr. Eng. Res., 73, 77, 10.1006/jaer.1998.0390

Beuning, 2008, Improved temporal resolution in process-based modelling of agricultural soil ammonia emissions, Atmos. Environ., 42, 3253, 10.1016/j.atmosenv.2007.04.057

Bowley, 2008, 266

Bussink, 1994, Ammonia volatilization from nitric-acid-treated cattle slurry surface applied to grassland, NJAS-Wagen. J. Life Sci., 42, 293

Carew, 2010, Ammonia emissions from livestock industries in Canada: feasibility of abatement strategies, Environ. Pollut., 158, 2618, 10.1016/j.envpol.2010.05.004

Chantigny, 2004, Ammonia volatilization and selected soil characteristics following application of anaerobically digested pig slurry, Soil Sci. Soc. Am. J., 68, 306, 10.2136/sssaj2004.3060

Chantigny, 2007, Gaseous nitrogen emissions and forage nitrogen uptake on soils fertilized with raw and treated swine manure, J. Environ. Qual., 36, 1864, 10.2134/jeq2007.0083

Chantigny, 2009, Ammonia volatilization following surface application of raw and treated liquid swine manure, Nutr. Cycl. Agroecosyst., 85, 275, 10.1007/s10705-009-9266-7

Chantigny, 2014, Evidencing overwinter loss of residual organic and clay-fixed nitrogen from spring-applied: 15N-labelled pig slurry, Can. J. Soil Sci., 94, 1, 10.4141/cjss2013-072

Cui, 2014, Assessing biogeochemical effects and best management practice for a wheat–maize cropping system using the DNDC model, Biogeosciences, 11, 91, 10.5194/bg-11-91-2014

Del Grosso, 2002, Simulated effects of dryland cropping intensification on soil organic matter and greenhouse gas exchanges using the DAYCENT ecosystem model, Environ. Pollut., 116, S75, 10.1016/S0269-7491(01)00260-3

Del Grosso, 2012, DayCent Model Simulations for Estimating Soil Carbon Dynamics and Greenhouse Gas Fluxes from Agricultural Production Systems, 241

Donovan, 1983, Factors affecting ammonia volatilization from sewage sludge applied to soil in a laboratory study, J. Environ. Qual., 12, 584, 10.2134/jeq1983.00472425001200040031x

Dutta, B., Smith, W.N., Grant, B.B., Pattey, E., Desjardins, R.L., Li, C.S. Submitted. Model development in DNDC for the prediction of evapotranspiration and water use in temperate field cropping systems. Submitted to Environ. Modell. Soft. Mar 16, 2015.

Environment Canada, 2015. Historical climate data, Québec City. Available at http://climate.weather.gc.ca/

Erisman, 2008, How a century of ammonia synthesis changed the world, Nat. Geosci., 1, 636, 10.1038/ngeo325

Fanko, 1995, Simulation of temperature-, water- and nitrogen dynamics using the model CANDY, Ecol. Model., 81, 213, 10.1016/0304-3800(94)00172-E

Galloway, 2003, The nitrogen cascade, Bioscience, 53, 341, 10.1641/0006-3568(2003)053[0341:TNC]2.0.CO;2

Génermont, 1997, A mechanistic model for estimating ammonia volatilization from slurry applied to bare soil, Agr. For. Meteorol., 88, 145, 10.1016/S0168-1923(97)00044-0

Giltrap, 2010, DNDC: a process-based model of greenhouse gas fluxes from agricultural soils, Agric. Ecosyst. Environ., 136, 292, 10.1016/j.agee.2009.06.014

Hansen, 1990

Kirchmann, 1998, Treatment of solid animal manures: identification of low NH3 emission practices, Nutr. Cycl. Agroecosyst., 51, 65, 10.1023/A:1009709011820

Kröbel, 2011, Development and evaluation of a new Canadian spring wheat sub-model for DNDC, Can. J. Soil Sci., 91, 503, 10.4141/cjss2010-059

Li, 2000, Modeling trace gas emissions from agricultural ecosystems, Nutr. Cycl. Agroecosyst., 58, 259, 10.1023/A:1009859006242

Li, 1992, A model of nitrous oxide evolution from soil driven by rainfall events: 1. Model structure and sensitivity, J. Geophys. Res. Atmos. (1984–2012), 97, 9759, 10.1029/92JD00509

Li, 2006, Modeling nitrate leaching with a biogeochemical model modified based on observations in a row-crop field in Iowa, Ecol. Modell., 196, 116, 10.1016/j.ecolmodel.2006.02.007

Lockyer, 1984, A system for the measurement in the field of losses of ammonia through volatilisation, J. Sci. Food Agr., 35, 837, 10.1002/jsfa.2740350805

Martinez, 1996, Emission d’ammoniac apres epandage de lisier: uantification et maıtrise, Ing. EAT, 5, 43

McGill, 1996, Review and classification of ten soil organic matter (SOM) models, 111

Misselbrook, 2005, Predicting ammonia losses following the application of livestock manure to land, Bioresour. Technol., 96, 159, 10.1016/j.biortech.2004.05.004

Pain, 1990, Odour and ammonia emissions following the spreading of anaerobically-digested pig slurry on grassland, Biol. Waste., 34, 259, 10.1016/0269-7483(90)90027-P

Pain, 1994, Effects of nitrification inhibitor and acid addition to cattle slurry on nitrogen losses and herbage yields, Grass Forage Sci., 49, 209, 10.1111/j.1365-2494.1994.tb01994.x

Parton, 1994, Long-term effects of crop management in wheat-fallow: II. CENTURY model simulations, Soil Sci. Soc. Am. J., 58, 530, 10.2136/sssaj1994.03615995005800020040x

Petersen, 2014, A new slurry pH model accounting for effects of ammonia and carbon dioxide volatilization on solution speciation, Nutr. Cycl. Agroecosyst., 100, 189, 10.1007/s10705-014-9637-6

Rochette, 2001, Ammonia volatilization and soil nitrogen dynamics following fall application of pig slurry on canola crop residues, Can. J. Soil Sci., 81, 515, 10.4141/S00-044

San Francisco, 2011, Efficiency of urease and nitrification inhibitors in reducing ammonia volatilization from diverse nitrogen fertilizers applied to different soil types and wheat straw mulching, J. Sci. Food Agr., 91, 1569, 10.1002/jsfa.4349

Sansoulet, 2014, Comparing the performance of the STICS, DNDC, and DayCent models for predicting N uptake and biomass of spring wheat in Eastern Canada, Field Crop Res., 156, 135, 10.1016/j.fcr.2013.11.010

Schaub, 1991

Schils, 2007, DairyWise, a whole-farm dairy model, J. Dairy Sci., 90, 5334, 10.3168/jds.2006-842

Sheppard, 2010, Farm practices survey and modelling to estimate monthly NH3 emissions from swine production in 12 Ecoregions of Canada, Can. J. Anim. Sci., 90, 145, 10.4141/CJAS09050

Søgaard, 2002, Ammonia volatilization from field-applied animal slurry—the ALFAM model, Atmos. Environ, 36, 3309, 10.1016/S1352-2310(02)00300-X

Sommer, 2001, Ammonia emission from field applied manure and its reduction—invited paper, Eur. J. Agron, 15, 1, 10.1016/S1161-0301(01)00112-5

Sommer, 1999, Infiltration of slurry liquid and volatilization of ammonia from surface applied pig slurry as affected by soil water content, J. Agr. Sci., 132, 297, 10.1017/S0021859698006261

Sommer, 2006, Ammonia volatilization from surface-applied livestock slurry as affected by slurry composition and slurry infiltration depth, J. Agr. Sci., 144, 229, 10.1017/S0021859606006022

Stockle, 1994, CropSyst, a cropping systems simulation model: water/nitrogen budgets and crop yield, Agr. Sys., 46, 335, 10.1016/0308-521X(94)90006-2

Uzoma, 2015, Assessing the effects of agricultural management on nitrous oxide emissions using flux measurements and the DNDC model, Agric. Ecosyst. Environ., 206, 71, 10.1016/j.agee.2015.03.014

Watson, 1994, Soil properties and the ability of the urease inhibitor N-(n-butyl) thiophosphoric triamide (nBTPT) to reduce ammonia volatilization from surface-applied urea, Soil Biol. Biochem., 26, 1165, 10.1016/0038-0717(94)90139-2

Willmott, 2005, Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Clim. Res., 30, 79, 10.3354/cr030079