Predictability of visual perturbation during locomotion: implications for corrective efference copy signaling
Tóm tắt
Từ khóa
Tài liệu tham khảo
Angelaki DE, Cullen KE (2008) Vestibular system: the many facets of a multimodal sense. Annu Rev Neurosci 31: 125–150
Angelaki DE, Hess BJ (2005) Selfmotion-induced eye movements: effects on visual acuity and navigation. Nat Rev Neurosci 6: 966–976
Azizi E, Landberg T, Wassersug RJ (2007) Vertebral function during tadpole locomotion. Zoology 110(4): 290–297 doi:10.1016/j.zool.2007.02.002
Bell C (1981) An efference copy which is modified by reafferent input. Science 214: 450–453
Beyeler A, Métais C, Combes D, Simmers J, Le Ray D (2008) Metamorphosis-induced changes in the coupling of spinal thoraco-lumbar motor outputs during swimming in Xenopus laevis. J Neurophys 100(3): 1372–1383
Combes D, Merrywest SD, Simmers J, Sillar KT (2004) Developmental segregation of spinal networks driving axial- and hindlimb-based locomotion in metamorphosing Xenopus laevis. J Physiol 559(1): 17–24
Combes D, Le Ray D, Lambert FM, Simmers J, Straka H (2008) An intrinsic feed-forward mechanism for vertebrate gaze stabilization. Curr Biol 18: R241–243
Crapse TB, Sommer MA (2008) Corollary discharge across the animal kingdom. Nat Rev Neurosci 9(8): 587–600
Cullen KE (2004) Sensory signals during active versus passive movement. Curr Opin Neurobiol 14: 698–706
Dietz V (1992) Human neuronal control of automatic functional movements: interaction between central programs and afferent input. Physiol Rev 72: 33–69
Easter SS, Johns PR (1974) Horizontal compensatory eye movements in goldfish (Carassius auratus). J Comp Physiol A 92(1): 37–57 doi:10.1007/bf00696525
Gittis AH, du Lac S (2006) Intrinsic and synaptic plasticity in the vestibular system. Curr Opin Neurobiol 16(4): 385–390 doi:10.1016/j.conb.2006.06.012
Grillner S (1981) Control of locomotion in bipeds, tetrapods, and fish. In: Brookhart JM, Mountcastle VB (eds) Handbook of physiology—the nervous system II. American Physiological Society, Bethesda, pp 1179–1236
Grillner S (2006) Biological pattern generation: the cellular and computational logic of networks in motion. Neuron 52(5): 751–766 doi:10.1016/j.neuron.2006.11.008
Harris LR (1965) Visual motion caused by movements of the eye, head and body. In: Smith AT, Snowman RJ (eds) Visual detection of motion. Academic Press, London, pp 397–435
Kheradmand A, Zee DS (2011) Cerebellum and ocular motor control. Frontiers Neurol 2. doi:10.3389/fneur.2011.00053
Lambert FM, Combes D, Simmers J, Straka H (2012) Gaze stabilization by efference copy signaling without sensory feedback during vertebrate locomotion. Curr Biol 22: 1649–1658
Lyon EP (1900) Compensatory motion in fishes. Am J Physiol 4(2): 77–82
Marlinsky VV (1992) Activity of lateral vestibular nucleus neurons during locomotion in the decerebrate Guinea pig. Exp Brain Res 90(3): 583–588. doi:10.1007/bf00230942
Montgomery JC, Bodznick D (1994) An adaptive filter that cancels self-induced noise in the electrosensory and lateral line mechanosensory systems of fish. Neurosci Lett 174(2): 145–148
Orlovsky GN (1972) Activity of vestibulospinal neurons during locomotion. Brain Res 46(0): 85–98 doi:10.1016/0006-8993(72)90007-8
Orlovsky GN, Deliagina TG, Grillner S (1999) Neuronal control of locomotion: from mollusc to man. Oxford University Press, New York
Poulet JFA, Hedwig B (2007) New insights into corollary discharges mediated by identified neural pathways. Trends Neurosci 30(1): 14–21
Roberts BL, Russell IJ (1972) The activity of lateral-line efferent neurones in stationary and swimming dogfish. J Exp Biol 57(2): 435–448
Rossignol S (1996) Visuomotor regulation of locomotion. Can J Physiol Pharmacol 74(4): 418–425
Simmons AM, Costa LM, Gerstein HB (2004) Lateral line-mediated rheotactic behavior in tadpoles of the African clawed frog (Xenopus laevis). J Comp Physiol A 190(9): 747–758
Sinha SR, Moss CF (2007) Vocal premotor activity in the superior colliculus. J Neurosci 27(1): 98–110
Sperry R (1950) Neural basis of the spontaneous optokinetic response produced by visual inversion. J Comp Physiol Psychol 43: 482–489
Stehouwer DJ (1987) Compensatory eye movements produced during fictive swimming of a deafferented, reduced preparation in vitro. Brain Res 410(2): 264–268 doi:10.1016/0006-8993(87)90323-4
Straka H, Dieringer N (2004) Basic organization principles of the VOR: lessons from frogs. Prog Neurobiol 73: 259–309
Suga N, Jen PH (1975) Peripheral control of acoustic signals in the auditory system of echolocating bats. J Exp Biol 62(2): 277–311
Udo M, Kamei H, Matsukawa K, Tanaka K (1982) Interlimb coordination in cat locomotion investigated with perturbation. Exp Brain Res 46(3): 438–447. doi:10.1007/bf00238638
von Helmholtz H (1866) Handbuch der Physiologischen Optik. English translation by J. P. C. Southall (1924) for the Optical Society of America.
von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip. Naturwissenschaften 37: 464–476
Webb B (2004) Neural mechanisms for prediction: do insects have forward models. Trends Neurosci 27: 278–282
Weeg MS, Land BR, Bass AH (2005) Vocal pathways modulate efferent neurons to the inner ear and lateral line. J Neurosci 25(25): 5967–5974