Predicción de unión de péptidos de MSA-2 y AMA-1 de Plasmodium falciparum al HLA clase II
Tài liệu tham khảo
World Health Organization, 2005
Sachs, 2002, The economic and social burden of malaria, Nature, 415, 680, 10.1038/415680a
Stanley, 1985, Recognition of a Mr 56K glycoprotein on the surface of Plasmodium falciparum merozoites by mouse monoclonal antibodies, J Immunol, 134, 3439, 10.4049/jimmunol.134.5.3439
Fenton, 1989, Polymorphism of a 35±45 Kda Plasmodium falciparum merozoite surface antigen, Mol Biochem Parasitol, 34, 79, 10.1016/0166-6851(89)90022-4
Heidrich, 1983, Identification of surface and integral antigens from spontaneously released Plasmodium falciparum merozoites by radioionidation and metabolic labeling, Z Parasitenkunde, 69, 715, 10.1007/BF00927421
Heidrich, 1984, Spontaneously released Plasmodium falciparum merozoites from culture possess glycoproteins, Z Parasitenkunde, 70, 747, 10.1007/BF00927127
Lyon, 1989, Specificities of antibodies that inhibit merozoite dispersal from malaria infected erythrocytes, Mol Biochem Parasitol, 36, 77, 10.1016/0166-6851(89)90203-X
Lyon, 1986, Plasmodium falciparum antigens synthetized by schizonts and stabilized at the merozoite surface when schizonts mature in the presence of protease inhibitors, J Immunol, 136, 2252, 10.4049/jimmunol.136.6.2252
Clark, 1989, 46±53 Kilodalton glycoprotein from the surface of Plasmodium falciparum merozoites, Mol Biochem Parasitol, 32, 15, 10.1016/0166-6851(89)90125-4
Ramasamy, 1987, Studies on glycoproteins in the human malaria parasite Plasmodium falciparum. Identification of a myristilated 45 Kda merozoite membrane glycoprotein, Immunol Cell Biol, 65, 419, 10.1038/icb.1987.48
Epping, 1988, An epitope recognized by inhibitory monoclonal antibodies that react with a 51 kilodalton merozoite surface antigen in Plasmodium falciparum, Mol Biochem Parasitol, 28, 1, 10.1016/0166-6851(88)90173-9
Hodder, 1996, The disulfide bond structure of Plasmodium apical membrane antigen-1, J Biol Chem, 271, 29446, 10.1074/jbc.271.46.29446
Narum, 1994, Differential localization of full-length and processed forms of PF83/AMA-1 an apical membrane antigen of Plasmodium falciparum merozoites, Mol Biochem Parasitol, 67, 59, 10.1016/0166-6851(94)90096-5
Wang, 2001, Structural basis of T-cell recognition of peptides bound to MHC molecules, Mol Immunol, 38, 1039, 10.1016/S0161-5890(02)00033-0
Abbas, 2002
Madden, 1995, The three-dimensional structure of peptide-MHC complexes, Annu Rev Immunol, 13, 587, 10.1146/annurev.iy.13.040195.003103
Fremont, 1996, Structure of an MHC class II molecule with covalently bound single peptides, Science, 272, 1001, 10.1126/science.272.5264.1001
Brown, 1993, 3-Dimensional structure of the human class-II histocompatibility antigen HLADR1, Nature, 364, 33, 10.1038/364033a0
Stern, 1994, Crystal structure of the human class II MHC protein HLA-DR1 complexed with an influenza virus peptide, Nature, 368, 215, 10.1038/368215a0
Hunt, 1992, Peptides presented to the immune system by the murine class II major histocompatibility complex molecule I-Ad, Science, 256, 1817, 10.1126/science.1319610
Chicz, 1993, Specificity and promiscuity among naturally processed peptides bound to HLA-DR alleles, J Exp Med, 178, 27, 10.1084/jem.178.1.27
Rudensky, 1991, Sequence analysis of peptides bound to MHC class II molecules, Nature, 353, 622, 10.1038/353622a0
Chicz, 1992, Predominant naturally processed peptides bound to HLA DR1 are derived from MHC-related molecules and are heterogeneous in size, Nature, 358, 764, 10.1038/358764a0
Rammennsee, 1995, MHC ligands and peptide motifs: First listing, Immunogenetics, 41, 178, 10.1007/BF00172063
Sinigaglia, 1995, Motifs and Supermotifs for MHC Class II Binding Peptides, J Exp Med, 181, 449, 10.1084/jem.181.2.449
Rodríguez, 2008, Teoría de unión al HLA clase II teorías de Probabilidad Combinatoria y Entropía aplicadas a secuencias peptídicas, Inmunología, 27, 151, 10.1016/S0213-9626(08)70064-7
Feynman, 1964, Leyes de la Termodinámica, Vol. 1, 44
Laplace, 1995
Feynman, 1964, Probabilidad, Vol. 1, 6
Mood, 1974
Blanco, 1996
Matvéev, 1987
Tolman, 1979
Shannon, 1980
Nielsen, 2004, Improved prediction of MHC class I and II epitopes using a novel Gibbs sampling approach, Bioinformatics, 20, 1388, 10.1093/bioinformatics/bth100
Southwood, 1998, Several common HLA-DR types share largely overlapping peptide binding repertoires, J Immunol, 160, 3363, 10.4049/jimmunol.160.7.3363
Brusic, 1998, Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network, Bioinformatics, 14, 121, 10.1093/bioinformatics/14.2.121
Dönnes, 2002, Prediction of MHC class I binding peptides, using SVMHC, BMC Bioinformatics, 3, 25, 10.1186/1471-2105-3-25
Nielsen, 2008, Quantitative predictions of peptide binding to any HLADR molecule of known sequence: NetMHCIIpan, PLoS Comput Biol, 4, e1000107, 10.1371/journal.pcbi.1000107
Texier, 2000, HLA-DR restricted peptide candidates for bee venom immunotherapy, J. Immunol, 164, 3177, 10.4049/jimmunol.164.6.3177
Akdis, 1996, Epitope-specific T cell tolerance to phospholipase A2 in bee venom immunotherapy and recovery by IL-2 and IL-15 in vitro, J Clin Invest, 98, 1676, 10.1172/JCI118963
Feynman, 1964, Comportamiento cuántico, Vol. 1, 37
Movimiento caótico, 1990, Orden y Caos, 66
Rodríguez, 2008, Diferenciación matemática de péptidos de alta unión de MSP-1 mediante la aplicación de la teoría de conjuntos, Inmunología, 27, 63, 10.1016/S0213-9626(08)70052-0
Rodríguez, 2008, Teoría de conjuntos aplicada a la caracterización matemática de unión de péptidos al HLA clase II, Rev Cienc Salud, 1, 9
Rodríguez, 2008, Caracterización física y matemática de péptidos de alta unión de MSP-1 mediante la aplicación de la teoría de la probabilidad y la entropía, Arch Alergia Inmunol Clin, 39, 74
