Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Hình ảnh và phổ cộng hưởng từ tiền lâm sàng trong các lĩnh vực công nghệ chẩn đoán hình ảnh, vật lý y học và chẩn đoán hình ảnh
Radiological Physics and Technology - Trang 1-13 - 2024
Tóm tắt
Chẩn đoán hình ảnh bằng cộng hưởng từ (MRI) là một kỹ thuật chẩn đoán hình ảnh không thể thiếu được sử dụng trong môi trường lâm sàng. MRI có ưu điểm hơn so với X-quang và chụp cắt lớp vi tính (CT) vì độ tương phản được cung cấp phụ thuộc vào sự khác biệt về mật độ của các mô cơ quan khác nhau. Ngoài các hệ thống MRI trong bệnh viện, tại Nhật Bản có hơn 100 hệ thống được sử dụng cho các mục đích nghiên cứu trong các lĩnh vực khác nhau, bao gồm nghiên cứu khoa học cơ bản, điều tra phân tử và lâm sàng, cũng như nghiên cứu khoa học đời sống, chẳng hạn như khám phá thuốc, y học thú y và kiểm tra thực phẩm. Trong nhiều năm qua, các nghiên cứu chẩn đoán hình ảnh tiền lâm sàng bổ sung đã được thực hiện trong nghiên cứu cơ bản trong các lĩnh vực công nghệ bức xạ, vật lý y học và chẩn đoán hình ảnh. Nghiên cứu MRI tiền lâm sàng bao gồm các nghiên cứu sử dụng hệ thống MRI nhỏ và hệ thống MRI toàn thân. Trong bài tổng quan này, chúng tôi tập trung vào nghiên cứu trên động vật sử dụng hệ thống MRI nhỏ như là “MRI tiền lâm sàng”. MRI tiền lâm sàng có thể được sử dụng để làm rõ sinh lý bệnh của các bệnh và cho nghiên cứu chuyển giao. Bài tổng quan này sẽ cung cấp cái nhìn tổng quát về các nghiên cứu MRI tiền lâm sàng trước đây như đánh giá bệnh lý não, tim và gan. Ngoài ra, chúng tôi sẽ cung cấp cái nhìn tổng quan về sự tiện ích của các nghiên cứu MRI tiền lâm sàng trong vật lý và công nghệ chẩn đoán hình ảnh.
Từ khóa
#MRI #chẩn đoán hình ảnh #tiền lâm sàng #vật lý y học #công nghệ chẩn đoán hình ảnhTài liệu tham khảo
Shaffer A, Kwok SS, Naik A, Anderson AT, Lam F, Wszalek T, et al. Ultra-high-field MRI in the diagnosis and management of gliomas: a systematic review. Front Neurol. 2022;13: 857825.
Ni R. Magnetic resonance imaging in tauopathy animal models. Front Aging Neurosci. 2021;13: 791679.
Mohr H, Foscarini A, Steiger K, Ballke S, Rischpler C, Schilling F, Pellegata NS. Imaging pheochromocytoma in small animals: preclinical models to improve diagnosis and treatment. EJNMMI Res. 2021;11(1):121.
Clark DP, Badea CT. Advances in micro-CT imaging of small animals. Phys Med. 2021;88:175–92.
Zhou Y, Chen H, Ambalavanan N, Liu G, Antony VB, Ding Q, et al. Noninvasive imaging of experimental lung fibrosis. Am J Respir Cell Mol Biol. 2015;53(1):8–13.
Saito S, Ninomiya K, Sawaya R. 12 usefulness of micro-CT in preclinical study. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2022;78(2):203–6.
Teramoto A, Saito S. 9. development of micro-CT and Its application of preclinical research. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2018;74(8):813–7.
Saito S, Murase K. Detection and early phase assessment of radiation-induced lung injury in mice using micro-CT. PLoS ONE. 2012;7(9): e45960.
Saito S, Murase K. Visualization of mouse spinal cord microscopic structures by use of ex vivo quantitative micro-CT images. Radiol Phys Technol. 2013;6(1):7–13.
Adler SS, Seidel J, Choyke PL. Advances in preclinical PET. Semin Nucl Med. 2022;52(3):382–402.
Shidahara M, Funaki Y, Watabe H. Noninvasive estimation of human radiation dosimetry of (18)F-FDG by whole-body small animal PET imaging in rats. Appl Radiat Isot. 2022;181: 110071.
Concilio SC, Russell SJ, Peng KW. A brief review of reporter gene imaging in oncolytic virotherapy and gene therapy. Mol Ther Oncolytics. 2021;21:98–109.
Serkova NJ, Glunde K, Haney CR, Farhoud M, De Lille A, Redente EF, et al. Preclinical applications of multi-platform imaging in animal models of cancer. Cancer Res. 2021;81(5):1189–200.
Masuda K, Taenaka H, Asanuma T, Nakatani S. Comparison of the effects of angiotensin II receptor antagonist monotherapy and combination therapy with a diuretic on cardiac function in spontaneously hypertensive rats. J Echocardiogr. 2012;10(4):125–31.
Nakano S, Masuda K, Asanuma T, Nakatani S. The effect of chronic renal failure on cardiac function: an experimental study with a rat model. J Echocardiogr. 2016;14(4):156–62.
Inagaki T, Pearson JT, Tsuchimochi H, Schwenke DO, Saito S, Higuchi T, et al. Evaluation of right coronary vascular dysfunction in severe pulmonary hypertensive rats using synchrotron radiation microangiography. Am J Physiol Heart Circ Physiol. 2021;320(3):H1021–36.
Saito S, Tanoue M, Masuda K, Mori Y, Nakatani S, Yoshioka Y, Murase K. Longitudinal observations of progressive cardiac dysfunction in a cardiomyopathic animal model by self-gated cine imaging based on 11.7-T magnetic resonance imaging. Sci Rep. 2017;7(1):9106.
Sawada K, Fukunishi K, Kashima M, Imai N, Saito S, Aoki I, Fukui Y. Regional difference in sulcal infolding progression correlated with cerebral cortical expansion in cynomolgus monkey fetuses. Congenit Anom (Kyoto). 2017;57(4):114–7.
Saito S, Mori Y, Yoshioka Y, Murase K. High-resolution ex vivo imaging in mouse spinal cord using micro-CT with 11.7T-MRI and myelin staining validation. Neurosci Res. 2012;73(4):337–40.
Wu D, Richards LJ, Zhao Z, Cao Z, Luo W, Shao W, et al. A diffusion MRI-based spatiotemporal continuum of the embryonic mouse brain for probing gene-neuroanatomy connections. Proc Natl Acad Sci U S A. 2022. https://doi.org/10.1073/pnas.2111869119.
Carli S, Chaabane L, De Rocco G, Albizzati E, Sormonta I, Calligaro S, et al. A comprehensive longitudinal study of magnetic resonance imaging identifies novel features of the Mecp2 deficient mouse brain. Neurobiol Dis. 2023;180: 106083.
Saito S, Hasegawa S, Sekita A, Bakalova R, Furukawa T, Murase K, et al. Manganese-enhanced MRI reveals early-phase radiation-induced cell alterations in vivo. Cancer Res. 2013;73(11):3216–24.
Onishi R, Sawaya R, Tsuji K, Arihara N, Ohki A, Ueda J, et al. Evaluation of temozolomide treatment for glioblastoma using amide proton transfer imaging and diffusion MRI. Cancers (Basel). 2022;14(8):1907.
Manno FAM, Kumar R, An Z, Khan MS, Su J, Liu J, et al. Structural and functional hippocampal correlations in environmental enrichment during the adolescent to adulthood transition in mice. Front Syst Neurosci. 2021;15: 807297.
Sawada K, Saito S, Horiuchi-Hirose M, Murase K. Enhanced heat shock protein 25 immunoreactivity in cranial nerve motoneurons and their related fiber tracts in rats prenatally-exposed to X-irradiation. Congenit Anom (Kyoto). 2014;54(2):87–93.
Sawada K, Saito S, Horiuchi-Hirose M, Mori Y, Yoshioka Y, Murase K. Dose-related cerebellar abnormality in rats with prenatal exposure to X-irradiation by magnetic resonance imaging volumetric analysis. Congenit Anom (Kyoto). 2013;53(3):127–30.
Arihara N, Saito S, Sawaya R, Onishi R, Tsuji K, Ohki A, et al. Evaluation of liver T(1rho) and T(2) values in acute liver inflammation models using 7T-MRI. Magn Reson Imaging. 2022;88:20–4.
Hakui H, Kioka H, Miyashita Y, Nishimura S, Matsuoka K, Kato H, et al. Loss-of-function mutations in the co-chaperone protein BAG5 cause dilated cardiomyopathy requiring heart transplantation. Sci Transl Med. 2022;14(628):eabf3274.
Kuribayashi S, Saito S, Sawaya R, Takahashi Y, Kioka H, Takezawa K, et al. Creatine chemical exchange saturation transfer (Cr-CEST) imaging can evaluate cisplatin-induced testicular damage. Magn Reson Med Sci. 2022. https://doi.org/10.2463/mrms.mp.2021-0125.
Saito S, Arihara N, Sawaya R, Morimoto-Ishikawa D, Ueda J. Metabolites alterations and liver injury in hepatic encephalopathy models evaluated by use of 7T-MRI. Metabolites. 2022;12(5):396.
Sawaya R, Kuribayashi S, Ueda J, Saito S. Evaluating the cisplatin dose dependence of testicular dysfunction using creatine chemical exchange saturation transfer imaging. Diagnostics (Basel). 2022;12(5):1046.
Grandjean J, Desrosiers-Gregoire G, Anckaerts C, Angeles-Valdez D, Ayad F, Barriere DA, et al. A consensus protocol for functional connectivity analysis in the rat brain. Nat Neurosci. 2023;26(4):673–81.
Onishi R, Ueda J, Ide S, Koseki M, Sakata Y, Saito S. Application of magnetic resonance strain analysis using feature tracking in a myocardial infarction model. Tomography. 2023;9(2):871–82.
Ueda J, Saito S. Evaluation of cardiac function in young Mdx mice using MRI with feature tracking and self-gated magnetic resonance cine imaging. Diagnostics (Basel). 2023;13(8):1472.
Gao S, Miura Y, Sumiyoshi A, Ohno S, Ogata K, Nomoto T, et al. Self-folding macromolecular drug carrier for cancer imaging and therapy. Adv Sci (Weinh). 2023. https://doi.org/10.1002/advs.202304171.
Kurahashi T, Nishime C, Nishinaka E, Komaki Y, Seki F, Urano K, et al. Transplantation of chemical compound-induced cells from human fibroblasts improves locomotor recovery in a spinal cord injury rat model. Int J Mol Sci. 2023;24(18):13853.
Mahara A, Shima K, Soni R, Onishi R, Hirano Y, Saito S, Yamaoka T. In vivo MR imaging for tumor-associated initial neovascularization by supramolecular contrast agents. Colloids Surf B Biointerfaces. 2023;230: 113525.
Matsubayashi K, Shinozaki M, Hata J, Komaki Y, Nagoshi N, Tsuji O, et al. A shift of brain network hub after spinal cord injury. Front Mol Neurosci. 2023;16:1245902.
Murase S, Sakitani N, Maekawa T, Yoshino D, Takano K, Konno A, et al. Interstitial-fluid shear stresses induced by vertically oscillating head motion lower blood pressure in hypertensive rats and humans. Nat Biomed Eng. 2023;7(11):1350–73.
Nakano T, Natsuyama T, Tsuji N, Katayama N, Ueda J, Saito S. Longitudinal evaluation using preclinical 7T-magnetic resonance imaging/spectroscopy on prenatally dose-dependent alcohol-exposed rats. Metabolites. 2023;13(4):527.
Okuno T, Hata J, Haga Y, Muta K, Tsukada H, Nakae K, et al. Group surrogate data generating models and similarity quantification of multivariate time-series: a resting-State fMRI STUDY. Neuroimage. 2023;279: 120329.
Skibbe H, Rachmadi MF, Nakae K, Gutierrez CE, Hata J, Tsukada H, et al. The brain/MINDS marmoset connectivity resource: an open-access platform for cellular-level tracing and tractography in the primate brain. PLoS Biol. 2023;21(6): e3002158.
Sumiyoshi A, Shibata S, Lazarova D, Zhelev Z, Aoki I, Bakalova R. Tolerable treatment of glioblastoma with redox-cycling “mitocans”: a comparative study in vivo. Redox Rep. 2023;28(1):2220531.
Zhou J, Zaiss M, Knutsson L, Sun PZ, Ahn SS, Aime S, et al. Review and consensus recommendations on clinical APT-weighted imaging approaches at 3T: application to brain tumors. Magn Reson Med. 2022;88(2):546–74.
Saito S, Sawada K, Hirose M, Mori Y, Yoshioka Y, Murase K. Diffusion tensor imaging of brain abnormalities induced by prenatal exposure to radiation in rodents. PLoS ONE. 2014;9(9): e107368.
Takahashi Y, Kioka H, Shintani Y, Ohki A, Takashima S, Sakata Y, et al. Detection of increased intracerebral lactate in a mouse model of Leigh syndrome using proton MR spectroscopy. Magn Reson Imaging. 2019;58:38–43.
Saito S, Sawada K, Mori Y, Yoshioka Y, Murase K. Brain and arterial abnormalities following prenatal X-ray irradiation in mice assessed by magnetic resonance imaging and angiography. Congenit Anom (Kyoto). 2015;55(2):103–6.
Ohki A, Saito S, Hirayama E, Takahashi Y, Ogawa Y, Tsuji M, et al. Comparison of chemical exchange saturation transfer imaging with diffusion-weighted imaging and magnetic resonance spectroscopy in a rat model of hypoxic-ischemic encephalopathy. Magn Reson Med Sci. 2020;19(4):359–65.
Schweser F, Preda M, Zivadinov R. Susceptibility weighted MRI in Rodents at 9.4 T. Methods Mol Biol. 2018;1718:205–34.
Saito S, Mori Y, Tanki N, Yoshioka Y, Murase K. Factors affecting the chemical exchange saturation transfer of Creatine as assessed by 11.7 T MRI. Radiol Phys Technol. 2015;8(1):146–52.
Hikishima K, Yagi K, Numano T, Homma K, Nitta N, Nakatani T, Hyodo K. Volumetric q-space imaging by 3D diffusion-weighted MRI. Magn Reson Imaging. 2008;26(4):437–45.
Viale A, Reineri F, Santelia D, Cerutti E, Ellena S, Gobetto R, Aime S. Hyperpolarized agents for advanced MRI investigations. Q J Nucl Med Mol Imaging. 2009;53(6):604–17.
Morikawa S, Kido C, Inubushi T. Observation of rat hind limb skeletal muscle during arterial occlusion and reperfusion by 31P MRS and 1H MRI. Magn Reson Imaging. 1991;9(3):269–74.
Yamamoto A, Sato H, Enmi J, Ishida K, Ose T, Kimura A, et al. Use of a clinical MRI scanner for preclinical research on rats. Radiol Phys Technol. 2009;2(1):13–21.
Nagata M, Kagawa T, Koutou D, Matsushita T, Yamazaki Y, Murase K. Measurement of manganese content in various organs in rats with or without glucose stimulation. Radiol Phys Technol. 2011;4(1):7–12.
Saito S, Takahashi Y, Ohki A, Shintani Y, Higuchi T. Early detection of elevated lactate levels in a mitochondrial disease model using chemical exchange saturation transfer (CEST) and magnetic resonance spectroscopy (MRS) at 7T-MRI. Radiol Phys Technol. 2019;12(1):46–54.
Saito S, Tanoue M, Ohki A, Takahashi Y. 19 application of chemical exchange saturation transfer imaging using ultra-high filed MRI. Nihon Hoshasen Gijutsu Gakkai Zasshi. 2019;75(10):1194–9.
McCarthy WJ, Vogelzang RL, Nemcek AA Jr, Joseph A, Pearce WH, Flinn WR, Yao JS. Excimer laser-assisted femoral angioplasty: early results. J Vasc Surg. 1991;13(5):607–14.
Tanoue M, Saito S, Takahashi Y, Araki R, Hashido T, Kioka H, et al. Amide proton transfer imaging of glioblastoma, neuroblastoma, and breast cancer cells on a 11.7T magnetic resonance imaging system. Magn Reson Imaging. 2019;62:181–90.
Feigin VL, Forouzanfar MH, Krishnamurthi R, Mensah GA, Connor M, Bennett DA, et al. Global and regional burden of stroke during 1990–2010: findings from the Global Burden of Disease Study 2010. Lancet. 2014;383(9913):245–54.
Saito S, Masuda K, Mori Y, Nakatani S, Yoshioka Y, Murase K. Mapping of left ventricle wall thickness in mice using 11.7-T magnetic resonance imaging. Magn Reson Imaging. 2017;36:128–34.
Murase K, Assanai P, Takata H, Matsumoto N, Saito S, Nishiura M. Kinetic analysis of superparamagnetic iron oxide nanoparticles in the liver of body-temperature-controlled mice using dynamic susceptibility contrast magnetic resonance imaging and an empirical mathematical model. Magn Reson Imaging. 2015;33(5):600–10.
Murase K, Assanai P, Takata H, Saito S, Nishiura M. A simple and inexpensive system for controlling body temperature in small animal experiments using MRI and the effect of body temperature on the hepatic kinetics of Gd-EOB-DTPA. Magn Reson Imaging. 2013;31(10):1744–51.
Saito S, Obata A, Kashiwagi Y, Abe K, Murase K. Dynamic contrast-enhanced MRI of the liver in Mrp2-deficient rats using the hepatobiliary contrast agent Gd-EOB-DTPA. Invest Radiol. 2013;48(7):548–53.
Moriyama Y, Saito S, Kobayashi S, Ogihara R, Koto D, Kitamura A, et al. Evaluation of concanavalin A-induced acute liver injury in rats using an empirical mathematical model and dynamic contrast-enhanced MR imaging with Gd-EOB-DTPA. Magn Reson Med Sci. 2012;11(1):53–60.
Saito S, Moriyama Y, Kobayashi S, Ogihara R, Koto D, Kitamura A, et al. Assessment of liver function in thioacetamide-induced rat acute liver injury using an empirical mathematical model and dynamic contrast-enhanced MRI with Gd-EOB-DTPA. J Magn Reson Imaging. 2012;36(6):1483–9.
