Precision medicine ― A promising, yet challenging road lies ahead

Current Opinion in Systems Biology - Tập 7 - Trang 1-7 - 2018
Noël Malod‐Dognin1, Julia Petschnigg1, Nataša Pržulj1
1Department of Computer Science, University College London, WC1E 6BT, London, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Chen, 2012, Personal omics profiling reveals dynamic molecular and medical phenotypes, Cell, 148, 1293, 10.1016/j.cell.2012.02.009

Marusyk, 2010, Tumor heterogeneity: causes and consequences, Biochim Biophys Acta, 1805, 105

Vogelstein, 2013, Cancer genome landscapes, Science, 339, 1546, 10.1126/science.1235122

Yu, 2016, Omics profiling in precision oncology, Mol Cell Proteomics, 15, 2525, 10.1074/mcp.O116.059253

Collins, 2015, A new initiative on precision medicine, N Engl J Med, 372, 793, 10.1056/NEJMp1500523

Hood, 2011, Predictive, personalized, preventive, participatory (p4) cancer medicine, Nat Rev Clin Oncol, 8, 184, 10.1038/nrclinonc.2010.227

Mirnezami, 2012, Preparing for precision medicine, N Engl J Med, 366, 489, 10.1056/NEJMp1114866

Costanzo, 2016, A global genetic interaction network maps a wiring diagram of cellular function, Science, 353, 10.1126/science.aaf1420

Parnas, 2015, A genome-wide crispr screen in primary immune cells to dissect regulatory networks, Cell, 162, 675, 10.1016/j.cell.2015.06.059

Shalem, 2014, Genome-scale crispr-cas9 knockout screening in human cells, Science, 343, 84, 10.1126/science.1247005

Wang, 2017, Gene essentiality profiling reveals gene networks and synthetic lethal interactions with oncogenic ras, Cell, 168, 890, 10.1016/j.cell.2017.01.013

Du, 2017, Genetic interaction mapping in mammalian cells using crispr interference, Nat Methods, 14, 577, 10.1038/nmeth.4286

Adamson, 2016, A multiplexed single-cell crispr screening platform enables systematic dissection of the unfolded protein response, Cell, 167, 1867, 10.1016/j.cell.2016.11.048

Park, 2017, A genome-wide crispr screen identifies a restricted set of hiv host dependency factors, Nat Genet, 49, 193, 10.1038/ng.3741

Farlik, 2016, DNA methylation dynamics of human hematopoietic stem cell differentiation, Cell Stem Cell, 19, 808, 10.1016/j.stem.2016.10.019

Roadmap Epigenomics, 2015, Integrative analysis of 111 reference human epigenomes, Nature, 518, 317, 10.1038/nature14248

Das, 2016, Nanostring expression profiling identifies candidate biomarkers of rad001 response in metastatic gastric cancer, ESMO Open, 1, 10.1136/esmoopen-2015-000009

Dixit, 2016, Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens, Cell, 167, 1853, 10.1016/j.cell.2016.11.038

Jaitin, 2016, Dissecting immune circuits by linking crispr-pooled screens with single-cell RNA-seq, Cell, 167, 1883, 10.1016/j.cell.2016.11.039

Drew, 2017, Integration of over 9,000 mass spectrometry experiments builds a global map of human protein complexes, Mol Syst Biol, 13, 932, 10.15252/msb.20167490

Li, 2017, The oncoppi network of cancer-focused protein-protein interactions to inform biological insights and therapeutic strategies, Nat Commun, 8

Levine, 2010, The control of the metabolic switch in cancers by oncogenes and tumor suppressor genes, Science, 330, 1340, 10.1126/science.1193494

Wishart, 2016, Emerging applications of metabolomics in drug discovery and precision medicine, Nat Rev Drug Discov, 15, 473, 10.1038/nrd.2016.32

Xia, 2013, Translational biomarker discovery in clinical metabolomics: an introductory tutorial, Metabolomics, 9, 280, 10.1007/s11306-012-0482-9

Kaddurah-Daouk, 2015, Pharmacometabolomics Research N: metabolomic signatures for drug response phenotypes: pharmacometabolomics enables precision medicine, Clin Pharmacol Ther, 98, 71, 10.1002/cpt.134

Weaver, 2013, Imaging mass spectrometry: from tissue sections to cell cultures, Adv Drug Deliv Rev, 65, 1039, 10.1016/j.addr.2013.03.006

Petrovski, 2014, Phenomics and the interpretation of personal genomes, Sci Transl Med, 6, 10.1126/scitranslmed.3010272

Smith, 2015, Using exposomics to assess cumulative risks and promote health, Environ Mol Mutagen, 56, 715, 10.1002/em.21985

Garrett, 2015, Cancer and the microbiota, Science, 348, 80, 10.1126/science.aaa4972

Koppel, 2017, Chemical transformation of xenobiotics by the human gut microbiota, Science, 356, 10.1126/science.aag2770

Aerts, 2016, The potential of radiomic-based phenotyping in precision medicine: a review, JAMA Oncol, 2, 1636, 10.1001/jamaoncol.2016.2631

Wu, 2016, Exploratory study to identify radiomics classifiers for lung cancer histology, Front Oncol, 6, 10.3389/fonc.2016.00071

Sharan, 2007, Network-based prediction of protein function, Mol Syst Biol, 3, 10.1038/msb4100129

Mitra, 2013, Integrative approaches for finding modular structure in biological networks, Nat Rev Genet, 14, 719, 10.1038/nrg3552

Barabasi, 2011, Network medicine: a network-based approach to human disease, Nat Rev Genet, 12, 56, 10.1038/nrg2918

Gligorijevic, 2016, Patient-specific data fusion for cancer stratification and personalised treatment, Pac Symp Biocomput, 21, 321

Menche, 2015, Disease networks. Uncovering disease-disease relationships through the incomplete interactome, Science, 347, 1257601, 10.1126/science.1257601

Strittmatter, 2014, Overcoming drug development bottlenecks with repurposing: old drugs learn new tricks, Nat Med, 20, 590, 10.1038/nm.3595

Zitnik, 2013, Discovering disease-disease associations by fusing systems-level molecular data, Sci Rep, 3, 10.1038/srep03202

Przulj, 2004, Modeling interactome: scale-free or geometric?, Bioinformatics, 20, 3508, 10.1093/bioinformatics/bth436

Davis, 2015, Topology-function conservation in protein-protein interaction networks, Bioinformatics, 31, 1632, 10.1093/bioinformatics/btv026

Gligorijevic, 2016, Integrative methods for analyzing big data in precision medicine, Proteomics, 16, 741, 10.1002/pmic.201500396

Shen, 2009, Integrative clustering of multiple genomic data types using a joint latent variable model with application to breast and lung cancer subtype analysis, Bioinformatics, 25, 2906, 10.1093/bioinformatics/btp543

Lock, 2013, Joint and individual variation explained (jive) for integrated analysis of multiple data types, Ann Appl Stat, 7, 523, 10.1214/12-AOAS597

Hofree, 2013, Network-based stratification of tumor mutations, Nat Methods, 10, 1108, 10.1038/nmeth.2651

Lugo-Martinez, 2017, Classification in biological networks with hypergraphlet kernels, arXiv Prepr, 1703

Li, 2014, Big biological data: challenges and opportunities, Genomics Proteomics Bioinforma, 12, 187, 10.1016/j.gpb.2014.10.001

Liang, 2015, Crispr/cas9-mediated gene editing in human tripronuclear zygotes, Protein Cell, 6, 363, 10.1007/s13238-015-0153-5

Ma, 2017, Correction of a pathogenic gene mutation in human embryos, Nature, 548, 413, 10.1038/nature23305

Mandal, 2014, Efficient ablation of genes in human hematopoietic stem and effector cells using crispr/cas9, Cell Stem Cell, 15, 643, 10.1016/j.stem.2014.10.004

Ren, 2017, Advancing chimeric antigen receptor t cell therapy with crispr/cas9, Protein Cell, 8, 634, 10.1007/s13238-017-0410-x

Li, 2017, Digital health: tracking physiomes and activity using wearable biosensors reveals useful health-related information, PLoS Biol, 15, e2001402, 10.1371/journal.pbio.2001402