Precise Method for Determining the Enthalpy of Vaporization of Concentrated Salt Solutions Using a Bubble Column Evaporator
Tóm tắt
An improved bubble column evaporator (BCE) system was used to determine accurate and precise enthalpy of vaporization (ΔH
vap) values for concentrated salt solutions. The method is based on the steady state volumetric energy balance developed in a BCE. The BCE system offers a novel and simple approach for ΔH
vap measurements because it only requires measurement of the hydrostatic differential pressure across the column and the temperatures of the steady state column and the inlet gas. In this work an automatic acquisition system was developed in order to study the frequency distribution of ΔH
vap values. It was established that vacuum insulation of the bubble column and a data acquisition system enhanced both the accuracy and precision of ΔH
vap measurements. In addition, a hygrometer was used to measure vapor pressures of concentrated Li2SO4 and ZnSO4 solutions to determine new ΔH
vap values. The results obtained are in better agreement with expected values and indicate the conditions required to enhance evaporative cooling systems and improve thermal desalination. An analysis was also carried out on the effect of salt concentration on ΔH
vap and on calculated values of the partial molar enthalpy of dilution (ΔH
dil).
Tài liệu tham khảo
Fish, L.W., Lielmezs, J.: General method for predicting the latent heat of vaporization. Ind. Eng. Chem. Fundam. 14, 248–256 (1975)
Tamir, A.: Prediction of latent heat of vaporization of multicomponent mixtures. Fluid Phase Equil. 8, 131–147 (1982)
Al-Shorachi, H.N., Hashim, E.T.: Prediction of the heat of vaporization from the heat of vaporization at normal boiling point. Pet. Sci. Technol. 25, 1527–1530 (2007)
Zhong, X.U.: An improved generalized Watson equation for prediction of latent heat of vaporization. Chem. Eng. Commun. 29, 257–269 (1984)
Torquato, S., Smith, P.: The latent heat of vaporization of a widely diverse class of fluids. J. Heat Transf. 106, 252–254 (1984)
Lunnon, R.G.: The latent heat of evaporation of aqueous salt solutions. Proc. Phys. Soc. London 25, 180–191 (1912)
Lide, D.R., Bruno, T.J.: CRC Handbook of Chemistry and Physics. CRC Press, Boca Raton (2012)
Gurovich, B.M., Zyuzin, R.A., Mezheritskii, S.M.: Experimental determination of the heat of vaporization of aqueous salt solutions at atmospheric pressure. Chem. Pet. Eng. 24, 599–600 (1988)
Craig, V.S.J., Ninham, B.W., Pashley, R.M.: Effect of electrolytes on bubble coalescence. Nature 364, 317–319 (1993)
Leifer, I., Patro, R.K., Bowyer, P.: A study on the temperature variation of rise velocity for large clean bubbles. J. Atmos. Ocean. Technol. 17, 1392–1402 (2000)
Francis, M., Pashley, R.M.: Application of a bubble column for evaporative cooling and a simple procedure for determining the latent heat of vaporization of aqueous salt solutions. J. Phys. Chem. B 113, 9311–9315 (2009)
Fan, C., Shahid, M., Pashley, R.M.: Studies on bubble column evaporation in various salt solutions. J. Solution Chem. 43, 1297–1312 (2014)
Apelblat, A., Korin, E.: The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of some ammonium salts. J. Chem. Thermodyn. 35, 699–709 (2003)
Apelblat, A., Manzurola, E., van Krieken, J., Nanninga, G.L.: Solubilities and vapour pressures of water over saturated solutions of magnesium-L-lactate, calcium-L-lactate, zinc-L-lactate, ferrous-L-lactate and aluminum-L-lactate. Fluid Phase Equil. 236, 162–168 (2005)
Apelblat, A., Korin, E.: The molar enthalpies of solution and vapour pressures of saturated aqueous solutions of some cesium salts. J. Chem. Thermodyn. 38, 152–157 (2006)
Apelblat, A., Korin, E.: The vapour pressures over saturated aqueous solutions of cadmium chloride, cadmium bromide, cadmium iodide, cadmium nitrate, and cadmium sulphate. J. Chem. Thermodyn. 39, 1065–1070 (2007)
Clarke, E.C.W., Glew, D.N.: Evaluation of the thermodynamic functions for aqueous sodium chloride from equilibrium and calorimetric measurements below 154 C. J. Phys. Chem. Ref. Data 14, 489 (1985)
Patil, K.R., Tripathi, A.D., Pathak, G., Katti, S.S.: Thermodynamic properties of aqueous electrolyte solutions. 1. Vapor pressure of aqueous solutions of lithium chloride, lithium bromide, and lithium iodide. J. Chem. Eng. Data 35, 166–168 (1990)
Patil, K.R., Tripathi, A.D., Pathak, G., Katti, S.S.: Thermodynamic properties of aqueous electrolyte solutions. 2. Vapor pressure of aqueous solutions of sodium bromide, sodium iodide, potassium chloride, potassium bromide, potassium iodide, rubidium chloride, cesium chloride, cesium bromide, cesium iodide, magnesium chloride, calcium chloride, calcium bromide, calcium iodide, strontium chloride, strontium bromide, strontium iodide, barium chloride, and barium bromide. J. Chem. Eng. Data 36, 225–230 (1991)
Carton, A., Sobron, F., Bolado, S., Gerboles, J.I.: Density, viscosity, and electrical conductivity of aqueous solutions of lithium sulfate. J. Chem. Eng. Data 40, 987–991 (1995)
Bešter-Rogač, M.: Electrical conductivity of concentrated aqueous solutions of divalent metal sulfates. J. Chem. Eng. Data 53, 1355–1359 (2008)
Apelblat, A., Korin, E.: Vapour pressures of saturated aqueous solutions of ammonium iodide, potassium iodide, potassium nitrate, strontium chloride, lithium sulphate, sodium thiosulphate, magnesium nitrate, and uranyl nitrate from T = (278 to 323) K. J. Chem. Thermodyn. 30, 459–471 (1998)
Robinson, R.A., Jones, R.S.: The activity coefficients of some bivalent metal sulfates in aqueous solution from vapor pressure measurements. J. Am. Chem. Soc. 58, 959–961 (1936)
Rockland, L.B.: Saturated salt solutions for static control of relative humidity between 5° and 40 °C. Anal. Chem. 32, 1375–1376 (1960)
Kangro, W., Groeneveld, A.: Konzentrierte wässrige lösungen. Z. Phys. Chem. Neue Folge 32, 110–126 (1962)
Robinson, R., Stokes, R.: Electrolyte Solutions (Revised), 2nd edn. Butterworths, London (1968)
Apelblat, A.: The vapour pressures of water over saturated aqueous solutions of barium chloride, magnesium nitrate, calcium nitrate, potassium carbonate, and zinc sulfate, at temperatures from 283 K to 313 K. J. Chem. Thermodyn. 24, 619–626 (1992)
Pearce, J., Eckstrom, H.: Vapor pressures and partial molal volumes of aqueous solutions of the alkali sulfates at 25°. J. Am. Chem. Soc. 59, 2689–2691 (1937)
El Guendouzi, M., Mounir, A., Dinane, A.: Water activity, osmotic and activity coefficients of aqueous solutions of Li2SO4 Na2SO4, K2SO4, (NH4)2SO4, MgSO4, MnSO4, NiSO4, CuSO4, and ZnSO4 at T = 298.15 K. J. Chem. Thermodyn. 35, 209–220 (2003)
Rard, J.A., Clegg, S.L., Palmer, D.A.: Isopiestic determination of the osmotic and activity coefficients of Li2SO4 (aq) at T = 298.15 and 323.15 K, and representation with an extended ion-interaction (Pitzer) model. J. Solution Chem. 36, 1347–1371 (2007)
Massey Jr, F.J.: The Kolmogorov–Smirnov test for goodness of fit. J. Am. Stat. Assoc. 46, 68–78 (1951)
Othmer, D., Zudkevitch, D.: Correlating latent heats and entropies of vaporization with temperature. Ind. Eng. Chem. 51, 791–796 (1959)
Hunter, J.B., Bliss, H.: Thermodynamic properties of aqueous salt solutions. Ind. Eng. Chem. 36, 945–953 (1944)
Garai, J.: Physical model for vaporization. Fluid Phase Equil. 283, 89–92 (2009)
Zhang, Y., Xu, Z.: Atomic radii of noble gas elements in condensed phases. Am. Miner. 80, 670–675 (1995)
Cappa, C.D., Smith, J.D., Wilson, K.R., Messer, B.M., Gilles, M.K., Cohen, R.C., Saykally, R.J.: Effects of alkali metal halide salts on the hydrogen bond network of liquid water. J. Phys. Chem. B 109, 7046–7052 (2005)
Dutcher, C.S., Wexler, A.S., Clegg, S.L.: Surface tensions of inorganic multicomponent aqueous electrolyte solutions and melts. J. Phys. Chem. A 114, 12216–12230 (2010)