Precipitation as the main mechanism for Cd(II), Pb(II) and Zn(II) removal from aqueous solutions using natural and activated forms of red mud

Environmental Advances - Tập 4 - Trang 100056 - 2021
Fabiano Tomazini da Conceição1, Mariana Scicia Gabriel da Silva1, Amauri Antônio Menegário2, Maria Lúcia Pereira Antunes3, Guillermo Rafael Beltran Navarro1, Alexandre Martins Fernandes1, Caetano C. Dorea4, Rodrigo Braga Moruzzi1
1Instituto de Geociências e Ciências Exatas, UNESP - Universidade Estadual Paulista, 1 – Avenida 24-A, n° 1515, C. P. 178, CEP 13506-900, Bela Vista, Rio Claro, São Paulo, Brazil
2Centro de Estudos Ambientais, UNESP - Universidade Estadual Paulista, Rio Claro, Brazil
3Instituto de Ciência e Tecnologia, UNESP - Universidade Estadual Paulista, Sorocaba, Brazil
4Department of Civil Engineering, University of Victoria, Victoria, Canada

Tóm tắt

Từ khóa


Tài liệu tham khảo

Amazônia Real, 2018. Vazamento de rejeitos da Hydro Alunorte causa danos socioambientais em Barbacena.https://amazoniareal.com.br/vazamento-de-rejeitos-da-hydro-alunorte-causa-danos-socioambientais-em-barcarena-no-para/ (accessed 9 November 2020).

Antunes, 2012, Red mud from Brazil: thermal behaviour and physical properties, Ind. Eng. Chem. Res., 51, 775, 10.1021/ie201700k

Apak, 1998, Modelling of copper (II), cadmium (II) and lead (II) adsorption on red mud, J. Colloid Interface Sci., 203, 122, 10.1006/jcis.1998.5457

Apak, 1998, Heavy metal cation retention by unconventional sorbents (red muds and fly ashes), Water Res., 32, 430, 10.1016/S0043-1354(97)00204-2

Ayala, 2019, Removal of zinc, cadmium and nickel from mining waste leachate using walnut shells, Environ. Prot. Eng., 45, 141

2018

Conceição, 2016, Cu(II) adsorption from aqueous solution using red mud activated by chemical and thermal treatment, Environ. Earth Sci., 75, 362, 10.1007/s12665-015-4929-y

Fortes, 2016, Synthesis and mechanical characterization of iron oxide rich sulfobelite cements prepared using bauxite residue, Mater. Res., 19, 276, 10.1590/1980-5373-MR-2015-0180

Gilmour, 1977, A kinetic study of the CaCO3 precipitation reaction, Agric. Water Manag., 1, 253, 10.1016/0378-3774(77)90004-X

Greenberg, 1992, Precipitation and dissolution kinetics and equilibria of aqueous ferrous carbonates vs temperature, Appl. Geochem., 7, 185, 10.1016/0883-2927(92)90036-3

Gupta, 2001, Process development for the removal of lead and chromium from aqueous solutions using red mud – an aluminum industry waste, Water Res., 35, 1125, 10.1016/S0043-1354(00)00389-4

Gupta, 2002, Removal of cadmium and zinc from aqueous solutions using red mud, Environ. Sci. Technol., 36, 3612, 10.1021/es020010v

Hind, 1999, The surface chemistry of Bayer process solids: a review, Colloids Surf. A, 146, 359, 10.1016/S0927-7757(98)00798-5

Ho, 1998, A comparison of chemisorption kinetic models applied to pollutant removal on various sorbents, Trans. Inst. Chem. Eng., 76, 332

Hua, 2017, The use of red mud as an immobiliser for metal/metalloid-contamined soil: a review, J. Hazard. Mater., 325, 17, 10.1016/j.jhazmat.2016.11.073

Jesus, 2015, Removal of reactive dye from aqueous solution using thermally treated red mud, Desalin. Water Treat., 55, 1040, 10.1080/19443994.2014.922444

Jones, 2011, Bauxite processing residue: a critical review of its formation, properties, storage, and revegetation, Crit. Rev. Environ. Sci. Technol., 41, 271, 10.1080/10643380902800000

Kazmierczak, 1981, Controlled composition studies of calcium carbonate and sulfate crystal growth, Croat. Chem. Acta, 54, 277

Leleyter, 1999, A new sequential extraction procedure for the speciation of particulate trace elements in river sediments, Int. J. Environ. Anal. Chem., 73, 109, 10.1080/03067319908032656

Liu, 2003, Kinetics of lead adsorption by iron oxides formed under the influence of citrate, Geochim. Cosmochim. Acta, 67, 1045, 10.1016/S0016-7037(02)01036-0

López, 1998, Adsorbent properties of red mud and its use for wastewater treatment, Water Res., 32, 1314, 10.1016/S0043-1354(97)00326-6

Lyu, 2020, Efficient removal of Pb(II) ions from aqueous solution by modified red mud, J. Hazard. Mater., 15

Mann, 1980, Solution geochemistry of lead and zinc in water containing carbonate, sulphate and chloride ions, Chem. Geol., 29, 293, 10.1016/0009-2541(80)90026-1

Marani, 1995, Lead precipitation in the presence of sulphate and carbonate: testing of thermodynamic predictions, Water Res., 29, 1085, 10.1016/0043-1354(94)00232-V

Mon, 2005, Cesium incorporation and diffusion in cancrinite, sodalite, zeolite, and allophone, Microporous Mesoporous Mater., 86, 277, 10.1016/j.micromeso.2005.07.030

Nadaroglu, 2010, Removal of copper from aqueous solution using red mud, Desalination, 251, 90, 10.1016/j.desal.2009.09.138

Órfão, 2006, Adsorption of reactive dye on chemically modified activated carbons – influence of pH, J. Colloid Interface Sci., 296, 480, 10.1016/j.jcis.2005.09.063

Pichinelli, 2017, Adsorption of Ni(II), Pb(II) and Zn(II) on Ca(NO3)2-neutralised red mud, Water Air Soil Pollut., 228, 1, 10.1007/s11270-016-3208-1

Pulford, 2012, Carbonised red mud - a new water treatment product made from a waste material, J. Environ. Manag., 100, 59, 10.1016/j.jenvman.2011.11.016

Qi, 2018, Analysis of bauxite residue components responsible for copper removal and related reaction products, Chemosphere, 207, 209, 10.1016/j.chemosphere.2018.05.041

Qi, 2020, Removal of Cr (III) from aqueous solution by using bauxite residue (red mud): identification of active components and column tests, Chemosphere, 245, 10.1016/j.chemosphere.2019.125560

Sahu, 2011, Adsorption of Zn(II) on activated red mud: Neutralized by CO2, Desalination, 266, 93, 10.1016/j.desal.2010.08.007

Sangameshwar, 1983, Supergene processes in zinc-lead-silver sulfide ores in carbonates, Econ. Geol., 78, 1379, 10.2113/gsecongeo.78.7.1379

Santona, 2006, Evaluation of the interaction mechanisms between red mud and heavy metals, J. Hazard. Mater., 136, 324, 10.1016/j.jhazmat.2005.12.022

São Paulo, Companhia Ambiental do Estado de São Paulo, 2012. Ficha de Informação Toxicológica. http://www.cetesb.sp.gov.br/userfiles/file/laboratorios/fit/cobre.pdf (accessed 12 September 2012).

Silva, 2019, Adsorção de Cd (II) por lama vermelha natural e com diferentes ativações, Geochim. Bras., 33, 76, 10.21715/GB2358-2812.2019331076

Silva Filho, 2007, Lama vermelha da indústria de beneficiamento de alumina: produção, características, disposição e aplicações alternativas, Matéria, 12, 322

Smiciklas, 2014, Effect of acid treatment on red mud properties with implications on Ni(II) sorption and stability, Chem. Eng. J., 242, 27, 10.1016/j.cej.2013.12.079

Smiljanic, 2010, Rinsed and thermally treated red mud sorbents for aqueous Ni2+ ions, Chem. Eng. J., 162, 75, 10.1016/j.cej.2010.04.062

Souza, 2013, Adsorption of reactive dye on seawater-neutralised bof reactive dye on seawater-neutralised bauxite refinery residue, J. Colloid Interface Sci., 396, 210, 10.1016/j.jcis.2013.01.011

Tessier, 1979, Sequential extraction procedure for the speciation of particulate trace metals, Anal. Chem., 51, 844, 10.1021/ac50043a017

1990

Vaclavikova, 2005, Removal of cadmium, zinc, copper and lead by red mud, an iron oxides containing hydrometallurgical waste, Stud. Surf. Sci. Catal., 155, 517, 10.1016/S0167-2991(05)80179-X

Wang, 2008, Novel applications of red mud as coagulant, adsorbent and catalyst for environmentally benign processes, Chemosphere, 72, 1621, 10.1016/j.chemosphere.2008.05.013

Whittington, 1998, The effect of reaction conditions on the composition of desilication product (DSP) formed under simulated Bayer conditions, Hydrometallurgy, 49, 1, 10.1016/S0304-386X(98)00021-8

Yang, 2020, Enhancing Cd(II) sorption by red mud with heat treatment: performance and mechanism of sorption, J. Environ. Manage., 255, 10.1016/j.jenvman.2019.109866