Precipitate-stabilized surface enabling high-performance Na0.67Ni0.33-xMn0.67ZnxO2 for sodium-ion battery
Tóm tắt
Từ khóa
Tài liệu tham khảo
Yabuuchi, 2014, Research development on sodium-ion batteries, Chem. Rev., 114, 11636, 10.1021/cr500192f
Hwang, 2017, Sodium-ion batteries: present and future, Chem. Soc. Rev., 46, 3529, 10.1039/C6CS00776G
Vaalma, 2018, A cost and resource analysis of sodium-ion batteries, Nat. Rev. Mater., 3, 18013, 10.1038/natrevmats.2018.13
Clément, 2015, Review—Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials, J. Electrochem. Soc., 162, A2589, 10.1149/2.0201514jes
Zhao, 2019, Ni-based cathode materials for Na-ion batteries, Nano Res., 12, 2018, 10.1007/s12274-019-2451-3
Guo, 2016, Recent advances in titanium-based electrode materials for stationary sodium-ion batteries, Energy Environ. Sci., 9, 2978, 10.1039/C6EE01807F
Li, 2017, Commercial prospects of existing cathode materials for sodium ion storage, Adv. Energy Mater., 7, 1700274, 10.1002/aenm.201700274
You, 2018, Progress in high-voltage cathode materials for rechargeable sodium-ion batteries, Adv. Energy Mater., 8, 1701785, 10.1002/aenm.201701785
Mu, 2018, Deciphering the cathode-electrolyte interfacial chemistry in sodium layered cathode materials, Adv. Energy Mater., 8, 1801975, 10.1002/aenm.201801975
Xie, 2016, Operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation, Adv. Energy Mater., 6, 1601306, 10.1002/aenm.201601306
Wang, 2018, Phase transition induced cracking plaguing layered cathode for sodium-ion battery, Nano Energy, 54, 148, 10.1016/j.nanoen.2018.09.073
Xu, 2017, Disintegration of meatball electrodes for LiNixMnyCozO2 cathode materials, Exp. Mech., 58, 549, 10.1007/s11340-017-0292-0
Amatucci, 1996, Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries, Solid State Ionics, 83, 167, 10.1016/0167-2738(95)00231-6
Zheng, 2013, Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process, Nano Lett., 13, 3824, 10.1021/nl401849t
Boulineau, 2013, First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries, Nano Lett., 13, 3857, 10.1021/nl4019275
Xu, 2018, Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries, J. Mater. Chem. A, 6, 21859, 10.1039/C8TA06875E
Xu, 2004, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 104, 4303, 10.1021/cr030203g
Alvarado, 2017, Improvement of the cathode electrolyte interphase on P2-Na2/3Ni1/3Mn2/3O2 by atomic layer deposition, ACS Appl. Mater. Interfaces, 9, 26518, 10.1021/acsami.7b05326
Liu, 2016, Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: the capacity decay mechanism and Al2O3 surface modification, Nano Energy, 27, 27, 10.1016/j.nanoen.2016.06.026
Wang, 2016, Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries, Angew. Chem. Int. Ed., 55, 7445, 10.1002/anie.201602202
Xu, 2014, Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1–y–z]O2 (0 < x, y, z < 1) intercalation cathode materials for high-energy Na-ion batteries, Chem. Mater., 26, 1260, 10.1021/cm403855t
Wu, 2015, P2-type Na0.66Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries, J. Power Sources, 281, 18, 10.1016/j.jpowsour.2014.12.083
Wang, 2017, Copper-substituted Na0.67Ni0.3−xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2-O2 phase transition, J. Mater. Chem. A, 5, 8752, 10.1039/C7TA00880E
Zhang, 2019, Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries, Nat. Commun., 10, 5203, 10.1038/s41467-018-07646-4
Zuo, 2018, Sodium storage behavior of Na0.66Ni0.33˗xZnxMn0.67O2 (x = 0, 0.07 and 0.14) positive materials in diglyme-based electrolytes, J. Power Sources, 400, 317, 10.1016/j.jpowsour.2018.08.037
Wu, 2016, Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries, ACS Appl. Mater. Interfaces, 8, 22227, 10.1021/acsami.6b06701
Wang, 2020, Advancing layered cathode material's cycling stability from uniform doping to non-uniform doping, J. Mater. Chem. A, 8, 16690, 10.1039/D0TA05262K
Wang, 2019, Dopant segregation boosting high-voltage cyclability of layered cathode for sodium ion batteries, Adv. Mater., 31, 1904816, 10.1002/adma.201904816
Yan, 2018, Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries, Nat. Energy, 3, 600, 10.1038/s41560-018-0191-3
Liu, 2017, Intergranular cracking as a major cause of long-term capacity fading of layered cathodes, Nano Lett., 17, 3452, 10.1021/acs.nanolett.7b00379
Miller, 2013, Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy, Adv. Energy Mater., 3, 1098, 10.1002/aenm.201300015
Konarov, 2019, Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries, Nano Energy, 59, 197, 10.1016/j.nanoen.2019.02.042
Wang, 2020, Ultralow-strain Zn-substituted layered oxide cathode with suppressed P2-O2 transition for stable sodium ion storage, Adv. Funct. Mater., 30, 1910327, 10.1002/adfm.201910327
Bai, 2018, Anionic redox activity in a newly Zn-doped sodium layered oxide P2-Na2/3Mn1−yZnyO2 (0 < y < 0.23), Adv. Energy Mater., 8, 1802379, 10.1002/aenm.201802379