Precipitate-stabilized surface enabling high-performance Na0.67Ni0.33-xMn0.67ZnxO2 for sodium-ion battery

eScience - Tập 2 Số 5 - Trang 529-536 - 2022
Kuan Wang1, Zhengfeng Zhang1, Sulan Cheng1, Xiao Han1, Junjie Fu1, Manling Sui1, Pengfei Yan1
1Beijing Key Laboratory of Microstructure and Properties of Solids, Faculty of Materials and Manufacturing, Beijing University of Technology, Beijing 100124, China

Tóm tắt

Từ khóa


Tài liệu tham khảo

Yabuuchi, 2014, Research development on sodium-ion batteries, Chem. Rev., 114, 11636, 10.1021/cr500192f

Hwang, 2017, Sodium-ion batteries: present and future, Chem. Soc. Rev., 46, 3529, 10.1039/C6CS00776G

Vaalma, 2018, A cost and resource analysis of sodium-ion batteries, Nat. Rev. Mater., 3, 18013, 10.1038/natrevmats.2018.13

Clément, 2015, Review—Manganese-based P2-type transition metal oxides as sodium-ion battery cathode materials, J. Electrochem. Soc., 162, A2589, 10.1149/2.0201514jes

Zhao, 2019, Ni-based cathode materials for Na-ion batteries, Nano Res., 12, 2018, 10.1007/s12274-019-2451-3

Guo, 2016, Recent advances in titanium-based electrode materials for stationary sodium-ion batteries, Energy Environ. Sci., 9, 2978, 10.1039/C6EE01807F

Li, 2017, Commercial prospects of existing cathode materials for sodium ion storage, Adv. Energy Mater., 7, 1700274, 10.1002/aenm.201700274

You, 2018, Progress in high-voltage cathode materials for rechargeable sodium-ion batteries, Adv. Energy Mater., 8, 1701785, 10.1002/aenm.201701785

Mu, 2018, Deciphering the cathode-electrolyte interfacial chemistry in sodium layered cathode materials, Adv. Energy Mater., 8, 1801975, 10.1002/aenm.201801975

Xie, 2016, Operando XRD and TXM study on the metastable structure change of NaNi1/3Fe1/3Mn1/3O2 under electrochemical sodium-ion intercalation, Adv. Energy Mater., 6, 1601306, 10.1002/aenm.201601306

Wang, 2018, Phase transition induced cracking plaguing layered cathode for sodium-ion battery, Nano Energy, 54, 148, 10.1016/j.nanoen.2018.09.073

Xu, 2017, Disintegration of meatball electrodes for LiNixMnyCozO2 cathode materials, Exp. Mech., 58, 549, 10.1007/s11340-017-0292-0

Amatucci, 1996, Cobalt dissolution in LiCoO2-based non-aqueous rechargeable batteries, Solid State Ionics, 83, 167, 10.1016/0167-2738(95)00231-6

Zheng, 2013, Corrosion/fragmentation of layered composite cathode and related capacity/voltage fading during cycling process, Nano Lett., 13, 3824, 10.1021/nl401849t

Boulineau, 2013, First evidence of manganese-nickel segregation and densification upon cycling in Li-rich layered oxides for lithium batteries, Nano Lett., 13, 3857, 10.1021/nl4019275

Xu, 2018, Chemomechanical behaviors of layered cathode materials in alkali metal ion batteries, J. Mater. Chem. A, 6, 21859, 10.1039/C8TA06875E

Xu, 2004, Nonaqueous liquid electrolytes for lithium-based rechargeable batteries, Chem. Rev., 104, 4303, 10.1021/cr030203g

Alvarado, 2017, Improvement of the cathode electrolyte interphase on P2-Na2/3Ni1/3Mn2/3O2 by atomic layer deposition, ACS Appl. Mater. Interfaces, 9, 26518, 10.1021/acsami.7b05326

Liu, 2016, Layered P2-Na2/3[Ni1/3Mn2/3]O2 as high-voltage cathode for sodium-ion batteries: the capacity decay mechanism and Al2O3 surface modification, Nano Energy, 27, 27, 10.1016/j.nanoen.2016.06.026

Wang, 2016, Suppressing the P2-O2 phase transition of Na0.67Mn0.67Ni0.33O2 by magnesium substitution for improved sodium-ion batteries, Angew. Chem. Int. Ed., 55, 7445, 10.1002/anie.201602202

Xu, 2014, Identifying the critical role of Li substitution in P2-Nax[LiyNizMn1–y–z]O2 (0 < x, y, z < 1) intercalation cathode materials for high-energy Na-ion batteries, Chem. Mater., 26, 1260, 10.1021/cm403855t

Wu, 2015, P2-type Na0.66Ni0.33–xZnxMn0.67O2 as new high-voltage cathode materials for sodium-ion batteries, J. Power Sources, 281, 18, 10.1016/j.jpowsour.2014.12.083

Wang, 2017, Copper-substituted Na0.67Ni0.3−xCuxMn0.7O2 cathode materials for sodium-ion batteries with suppressed P2-O2 phase transition, J. Mater. Chem. A, 5, 8752, 10.1039/C7TA00880E

Zhang, 2019, Manganese based layered oxides with modulated electronic and thermodynamic properties for sodium ion batteries, Nat. Commun., 10, 5203, 10.1038/s41467-018-07646-4

Zuo, 2018, Sodium storage behavior of Na0.66Ni0.33˗xZnxMn0.67O2 (x = 0, 0.07 and 0.14) positive materials in diglyme-based electrolytes, J. Power Sources, 400, 317, 10.1016/j.jpowsour.2018.08.037

Wu, 2016, Insights into the effects of zinc doping on structural phase transition of P2-type sodium nickel manganese oxide cathodes for high-energy sodium ion batteries, ACS Appl. Mater. Interfaces, 8, 22227, 10.1021/acsami.6b06701

Wang, 2020, Advancing layered cathode material's cycling stability from uniform doping to non-uniform doping, J. Mater. Chem. A, 8, 16690, 10.1039/D0TA05262K

Wang, 2019, Dopant segregation boosting high-voltage cyclability of layered cathode for sodium ion batteries, Adv. Mater., 31, 1904816, 10.1002/adma.201904816

Yan, 2018, Tailoring grain boundary structures and chemistry of Ni-rich layered cathodes for enhanced cycle stability of lithium-ion batteries, Nat. Energy, 3, 600, 10.1038/s41560-018-0191-3

Liu, 2017, Intergranular cracking as a major cause of long-term capacity fading of layered cathodes, Nano Lett., 17, 3452, 10.1021/acs.nanolett.7b00379

Miller, 2013, Observation of microstructural evolution in Li battery cathode oxide particles by in situ electron microscopy, Adv. Energy Mater., 3, 1098, 10.1002/aenm.201300015

Konarov, 2019, Exceptionally highly stable cycling performance and facile oxygen-redox of manganese-based cathode materials for rechargeable sodium batteries, Nano Energy, 59, 197, 10.1016/j.nanoen.2019.02.042

Wang, 2020, Ultralow-strain Zn-substituted layered oxide cathode with suppressed P2-O2 transition for stable sodium ion storage, Adv. Funct. Mater., 30, 1910327, 10.1002/adfm.201910327

Bai, 2018, Anionic redox activity in a newly Zn-doped sodium layered oxide P2-Na2/3Mn1−yZnyO2 (0 < y < 0.23), Adv. Energy Mater., 8, 1802379, 10.1002/aenm.201802379

Yan, 2019, Injection of oxygen vacancies in the bulk lattice of layered cathodes, Nat. Nanotechnol., 14, 602, 10.1038/s41565-019-0428-8