PrecHiMn-4—A thermodynamic database for high-Mn steels
Tài liệu tham khảo
Gutierrez-Urrutia, 2014, High strength and ductile low density austenitic FeMnAlC steels: simplex and alloys strengthened by nanoscale ordered carbides, Mater. Sci. Technol., 30, 1099, 10.1179/1743284714Y.0000000515
Sutou, 2010, High-strength Fe–20Mn–Al–C-based alloys with low density, ISIJ Int., 50, 893, 10.2355/isijinternational.50.893
Frommeyer, 2006, Microstructures and mechanical properties of high-strength Fe–Mn–Al–C light-weight TRIPLEX steels, Steel Res. Int., 77, 627, 10.1002/srin.200606440
Zuazo, 2014, Low-density steels: complex metallurgy for automotive applications, JOM, 66, 1747, 10.1007/s11837-014-1084-y
Lindahl, 2015, A thermodynamic re-assessment of Al–V toward an assessment of the ternary Al–Ti–V system, Calphad, 51, 75, 10.1016/j.calphad.2015.07.002
Andersson, 2002, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 26, 273, 10.1016/S0364-5916(02)00037-8
Lee, 2016, β-Mn formation and aging effect on the fracture behavior of high-Mn low-density steels, Scr. Mater., 124, 193, 10.1016/j.scriptamat.2016.04.040
Lindahl, 2013, The Al–Fe–Mn system revisited—An updated thermodynamic description using the most recent binaries, Calphad, 43, 86, 10.1016/j.calphad.2013.05.001
Sundman, 2009, An assessment of the entire Al–Fe system including D03 ordering, Acta Mater., 57, 2896, 10.1016/j.actamat.2009.02.046
Du, 2007, Reassessment of the Al–Mn system and a thermodynamic description of the Al–Mg–Mn system, Int. J. Mater. Res., 98, 855, 10.3139/146.101547
Lindahl, 2015, Ordering in ternary BCC alloys applied to the Al–Fe–Mn system, Calphad, 51, 211, 10.1016/j.calphad.2015.09.008
TCFE4: Thermodynamic database for iron based alloys, Thermo-Calc AB, Stockholm, Sweden, 2006.
Lee, 2001, Thermodynamic assessment of the Fe–Nb–Ti–C–N system, Metall. Mater. Trans. A, 32, 2423, 10.1007/s11661-001-0033-x
Liu, 2012, Ab initio calculations and thermodynamic modeling for the Fe–Mn–Nb system, Calphad, 38, 43, 10.1016/j.calphad.2012.03.004
Hillert, 2001, The compound energy formalism, J. Alloy. Compd., 320, 161, 10.1016/S0925-8388(00)01481-X
Khvan, 2012, Thermodynamic description of the Fe–Mn–Nb–C system, Calphad, 39, 62, 10.1016/j.calphad.2012.09.001
Khvan, 2013, Thermodynamic assessment of Fe–Mn–Nb–N and Nb–C–N systems, Calphad, 40, 10, 10.1016/j.calphad.2012.11.001
Jacob, 2016, Liquidus projection and thermodynamic modeling of the Cr–Fe–Nb ternary system, Calphad, 54, 1, 10.1016/j.calphad.2016.04.013
Huang, 1996, Thermodynamic assessment of the Nb–N system, Metall. Mater. Trans. A, 27, 3591, 10.1007/BF02595450
Khvan, 2013, Thermodynamic assessment of the Fe–Nb–V system, Calphad, 43, 143, 10.1016/j.calphad.2013.05.002
Khvan, 2012, Thermodynamic assessment of Cr–Nb–C and Mn–Nb–C systems, Calphad, 39, 54, 10.1016/j.calphad.2012.09.002
Djurovic, 2011, Thermodynamic assessment of the Fe–Mn–C system, Calphad, 35, 479, 10.1016/j.calphad.2011.08.002
Koyama, 1971, Effects of Mn, Si, Cr and Ni on the solution and precipitation of niobium carbide in iron austenite, J. Jpn. Inst. Met, 35, 1089, 10.2320/jinstmet1952.35.11_1089
Hallstedt, 2009, Modelling of interstitials in the bcc phase, Calphad, 33, 233, 10.1016/j.calphad.2008.09.013
Balasubramanian, 1989, Experimental investigation of the thermodynamics of Fe–Nb–N austenite and nonstoichiometric niobium nitride (1373–1673 K), Can. Metall. Quart., 28, 301, 10.1179/cmq.1989.28.4.301
Koyama, 1971, The effects of Mn, Si, Cr and Ni on the reaction of solution and precipitation of niobium nitride in iron austenite, J. Jpn. Inst. Met, 35, 698, 10.2320/jinstmet1952.35.7_698
Connetable, 2008, A Calphad assessment of Al–C–Fe system with the carbide modelled as an ordered form of the fcc phase, Calphad, 32, 361, 10.1016/j.calphad.2008.01.002
Chin, 2010, Thermodynamic calculation on the stability of (Fe,Mn)3AlC carbide in high aluminum steels, J. Alloy. Compd., 505, 217, 10.1016/j.jallcom.2010.06.032
TCFE8: Thermodynamic database for iron based alloys, Thermo-Calc AB, Stockholm, Sweden, 2015.
Huang, 1990, A thermodynamic assessment of the Fe-Mn-C system, Metall. Trans. A, 21, 2115, 10.1007/BF02647870
Jansson, 1997
Kim, 2015, Development of thermodynamic database for high Mn–high Al steels: phase equilibria in the Fe-Mn-Al-C system by experiment and thermodynamic modeling, Calphad, 51, 89, 10.1016/j.calphad.2015.08.004
Gröbner, 1995, Thermodynamic calculations in the Y–Al–C system, J. Alloy. Compd., 220, 8, 10.1016/0925-8388(94)06028-2
Lukas, 1998, System Al–N, 2, 65
Witusiewicz, 2009, The Al–B–Nb–Ti system. IV: experimental study and thermodynamic re-evaluation of the binary Al–Nb and ternary Al–Nb–Ti systems, J. Alloy. Compd., 472, 133, 10.1016/j.jallcom.2008.05.008
Feufel, 1997, Investigation of the Al–Mg–Si system by experiments and thermodynamic calculations, J. Alloy. Compd., 247, 31, 10.1016/S0925-8388(96)02655-2
Witusiewicz, 2008, The Al–B–Nb–Ti system. III: thermodynamic re-evaluation of the constituent binary system Al–Ti, J. Alloy. Compd., 465, 64, 10.1016/j.jallcom.2007.10.061
Saunders, 1998, System Al–V, 2, 95
Gustafson, 1985, A thermodynamic evaluation of the Fe–C system, Scand. J. Metall., 14, 259
Huang, 1989, An assessment of the Fe–Mn system, Calphad, 13, 243, 10.1016/0364-5916(89)90004-7
Du, 1993, A reevaluation of the Fe–N and Fe–C–N systems, J. Phase Equilib., 14, 682, 10.1007/BF02667880
Lacaze, 1991, An assessment of the Fe–C–Si system, Metall. Trans. A, 22, 2211, 10.1007/BF02664987
Dumitrescu, 1998, Comparison of Fe–Ti assessments, J. Phase Equilib., 19, 441, 10.1361/105497198770341923
Huang, 1991, A thermodynamic evaluation of the Fe–V–C system, Z. Metallkd., 82, 391
Djurovic, 2010, Thermodynamic assessment of the Mn–C system, Calphad, 34, 279, 10.1016/j.calphad.2010.05.002
Qiu, 1993, Predictive approach to entropy of manganese nitrides and calculation of the Mn–N phase diagram, Z. Metallkd., 81, 11
Tibballs, 1998, System Mn–Si, 2, 236
Saunders, 1998, System Mn–Ti, 2, 241
Huang, 1991, A thermodynamic analysis of the Mn–V And Fe–Mn–V systems, Calphad, 15, 195, 10.1016/0364-5916(91)90018-F
Fernandes, 2002, Thermodynamic modeling of the Nb–Si system, Intermetallics, 10, 993, 10.1016/S0966-9795(02)00125-5
Zhang, 2001, Thermodynamic assessment of the Nb–Ti system, Calphad, 25, 305, 10.1016/S0364-5916(01)00051-7
Hari Kumar, 1994, Thermodynamic calculation of Nb–Ti–V phase diagram, Calphad, 18, 71, 10.1016/0364-5916(94)90008-6
Gröbner, 1996, Thermodynamic calculation of the ternary system Al–Si–C, Calphad, 20, 247, 10.1016/S0364-5916(96)00027-2
Ma, 2003, Thermodynamic assessment of the Si–N system, Calphad, 27, 383, 10.1016/j.calphad.2003.12.005
Seifert, 1996, Thermodynamic optimization of the Ti–Si system, Z. Metallkd., 87, 2
Rand, 1998, System Si–V, 2, 270
Dumitrescu, 1999, A reassessment of Ti–C–N based on a critical review of available assessments of Ti–N and Ti–C, Z. Metallkd., 90, 534
Zeng, 1996, Critical assessment and thermodynamic modeling of the Ti–N system, Z. Metallkd., 87, 540
Ghosh, 2002, Thermodynamic and kinetic modeling of the Cr–Ti–V system, J. Phase Equilib., 23, 310, 10.1361/105497102770331569
Huang, 1991, An assessment of the V–C system, Z. Metallkd., 82, 174
Ohtani, 1991, A thermodynamic assessment of the V–N system, Calphad, 15, 11, 10.1016/0364-5916(91)90022-C
Qiu, 1993, A thermodynamic evaluation of the Fe–Mn–N system, Metall. Trans. A, 24, 629, 10.1007/BF02656632
Forsberg, 1993, Thermodynamic evaluation of the Fe–Mn–Si system and the γ/ε martensitic transformation, J. Phase Equilib., 14, 354, 10.1007/BF02668233
Miettinen, 1998, Reassessed thermodynamic solution phase data for ternary Fe–Si–C system, Calphad, 22, 231, 10.1016/S0364-5916(98)00026-1
Ohtani, 1991, A thermodynamic assessment of the Fe–N–V system, Calphad, 15, 25, 10.1016/0364-5916(91)90023-D
Fernández Guillermet, 1991, Thermodynamic analysis of stable and metastable carbides in the Mn–V–C system and predicted phase diagram, Int. J. Thermophys., 12, 1077, 10.1007/BF00503520
Frisk, 2008, Thermodynamic modelling of multicomponent cubic Nb, Ti and V carbides/carbonitrides, Calphad, 32, 326, 10.1016/j.calphad.2007.11.007
Markström, 2008, Combined ab-initio and experimental assessment of A1–xBxC mixed carbides, Calphad, 32, 615, 10.1016/j.calphad.2008.07.014
Zeng, 2013, Thermodynamic assessment and applications of Ti–V–N system, Mater. Sci. Technol., 14, 1083, 10.1179/mst.1998.14.11.1083
Huang, 1991, Thermodynamic properties of the Fe–Mn–V–C system, Metall. Trans. A, 22, 1911, 10.1007/BF02669859
Mathon, 2009, Calphad-type assessment of the Fe–Nb–Ni ternary system, Calphad, 33, 136, 10.1016/j.calphad.2008.10.005
Syutkin, 2016, Experimental determination of the thermodynamic properties of the Laves phases in the Cr–Fe–Nb system, Thermochim. Acta, 624, 47, 10.1016/j.tca.2015.12.001
Meschel, 2006, The standard enthalpies of formation of some intermetallic compounds of transition metals by high temperature direct synthesis calorimetry, J. Alloy. Compd., 415, 143, 10.1016/j.jallcom.2005.08.006
Smith, 1966, The solubility of niobium (colombium) carbide in gamma iron, Trans. Metall. Soc. AIME, 236, 220
Mori, 1968, Thermodynamic properties of niobium carbides and nitrides in steels, Tetsu-to-Hagané, 54, 763, 10.2355/tetsutohagane1955.54.7_763
Lakshmanan, 1984, Solubility product for niobium carbide in austenite, Metall. Trans. A, 15, 541, 10.1007/BF02644978