PrecHiMn-4—A thermodynamic database for high-Mn steels

Bengt Hallstedt1, Alexandra V. Khvan2, Bonnie B. Lindahl3, Malin Selleby3, Shuhong Liu4
1Institute for Materials Applications in Mechanical Engineering, RWTH Aachen University, D-52062 Aachen, Germany
2Thermochemistry of Materials Scientific Research Centre, NUST MISIS, Leninsky Prosp. 4, 119049 Moscow, Russia
3Department of Materials Science, KTH Royal Institute of Technology, SE-100 44 Stockholm, Sweden
4State Key Laboratory of Powder Metallurgy, Central South University, Changsha, Hunan 410083, PR China

Tài liệu tham khảo

Gutierrez-Urrutia, 2014, High strength and ductile low density austenitic FeMnAlC steels: simplex and alloys strengthened by nanoscale ordered carbides, Mater. Sci. Technol., 30, 1099, 10.1179/1743284714Y.0000000515 Sutou, 2010, High-strength Fe–20Mn–Al–C-based alloys with low density, ISIJ Int., 50, 893, 10.2355/isijinternational.50.893 Frommeyer, 2006, Microstructures and mechanical properties of high-strength Fe–Mn–Al–C light-weight TRIPLEX steels, Steel Res. Int., 77, 627, 10.1002/srin.200606440 Zuazo, 2014, Low-density steels: complex metallurgy for automotive applications, JOM, 66, 1747, 10.1007/s11837-014-1084-y Lindahl, 2015, A thermodynamic re-assessment of Al–V toward an assessment of the ternary Al–Ti–V system, Calphad, 51, 75, 10.1016/j.calphad.2015.07.002 Andersson, 2002, Thermo-Calc & DICTRA, computational tools for materials science, Calphad, 26, 273, 10.1016/S0364-5916(02)00037-8 Lee, 2016, β-Mn formation and aging effect on the fracture behavior of high-Mn low-density steels, Scr. Mater., 124, 193, 10.1016/j.scriptamat.2016.04.040 Lindahl, 2013, The Al–Fe–Mn system revisited—An updated thermodynamic description using the most recent binaries, Calphad, 43, 86, 10.1016/j.calphad.2013.05.001 Sundman, 2009, An assessment of the entire Al–Fe system including D03 ordering, Acta Mater., 57, 2896, 10.1016/j.actamat.2009.02.046 Du, 2007, Reassessment of the Al–Mn system and a thermodynamic description of the Al–Mg–Mn system, Int. J. Mater. Res., 98, 855, 10.3139/146.101547 Lindahl, 2015, Ordering in ternary BCC alloys applied to the Al–Fe–Mn system, Calphad, 51, 211, 10.1016/j.calphad.2015.09.008 TCFE4: Thermodynamic database for iron based alloys, Thermo-Calc AB, Stockholm, Sweden, 2006. Lee, 2001, Thermodynamic assessment of the Fe–Nb–Ti–C–N system, Metall. Mater. Trans. A, 32, 2423, 10.1007/s11661-001-0033-x Liu, 2012, Ab initio calculations and thermodynamic modeling for the Fe–Mn–Nb system, Calphad, 38, 43, 10.1016/j.calphad.2012.03.004 Hillert, 2001, The compound energy formalism, J. Alloy. Compd., 320, 161, 10.1016/S0925-8388(00)01481-X Khvan, 2012, Thermodynamic description of the Fe–Mn–Nb–C system, Calphad, 39, 62, 10.1016/j.calphad.2012.09.001 Khvan, 2013, Thermodynamic assessment of Fe–Mn–Nb–N and Nb–C–N systems, Calphad, 40, 10, 10.1016/j.calphad.2012.11.001 Jacob, 2016, Liquidus projection and thermodynamic modeling of the Cr–Fe–Nb ternary system, Calphad, 54, 1, 10.1016/j.calphad.2016.04.013 Huang, 1996, Thermodynamic assessment of the Nb–N system, Metall. Mater. Trans. A, 27, 3591, 10.1007/BF02595450 Khvan, 2013, Thermodynamic assessment of the Fe–Nb–V system, Calphad, 43, 143, 10.1016/j.calphad.2013.05.002 Khvan, 2012, Thermodynamic assessment of Cr–Nb–C and Mn–Nb–C systems, Calphad, 39, 54, 10.1016/j.calphad.2012.09.002 Djurovic, 2011, Thermodynamic assessment of the Fe–Mn–C system, Calphad, 35, 479, 10.1016/j.calphad.2011.08.002 Koyama, 1971, Effects of Mn, Si, Cr and Ni on the solution and precipitation of niobium carbide in iron austenite, J. Jpn. Inst. Met, 35, 1089, 10.2320/jinstmet1952.35.11_1089 Hallstedt, 2009, Modelling of interstitials in the bcc phase, Calphad, 33, 233, 10.1016/j.calphad.2008.09.013 Balasubramanian, 1989, Experimental investigation of the thermodynamics of Fe–Nb–N austenite and nonstoichiometric niobium nitride (1373–1673 K), Can. Metall. Quart., 28, 301, 10.1179/cmq.1989.28.4.301 Koyama, 1971, The effects of Mn, Si, Cr and Ni on the reaction of solution and precipitation of niobium nitride in iron austenite, J. Jpn. Inst. Met, 35, 698, 10.2320/jinstmet1952.35.7_698 Connetable, 2008, A Calphad assessment of Al–C–Fe system with the carbide modelled as an ordered form of the fcc phase, Calphad, 32, 361, 10.1016/j.calphad.2008.01.002 Chin, 2010, Thermodynamic calculation on the stability of (Fe,Mn)3AlC carbide in high aluminum steels, J. Alloy. Compd., 505, 217, 10.1016/j.jallcom.2010.06.032 TCFE8: Thermodynamic database for iron based alloys, Thermo-Calc AB, Stockholm, Sweden, 2015. Huang, 1990, A thermodynamic assessment of the Fe-Mn-C system, Metall. Trans. A, 21, 2115, 10.1007/BF02647870 Jansson, 1997 Kim, 2015, Development of thermodynamic database for high Mn–high Al steels: phase equilibria in the Fe-Mn-Al-C system by experiment and thermodynamic modeling, Calphad, 51, 89, 10.1016/j.calphad.2015.08.004 Gröbner, 1995, Thermodynamic calculations in the Y–Al–C system, J. Alloy. Compd., 220, 8, 10.1016/0925-8388(94)06028-2 Lukas, 1998, System Al–N, 2, 65 Witusiewicz, 2009, The Al–B–Nb–Ti system. IV: experimental study and thermodynamic re-evaluation of the binary Al–Nb and ternary Al–Nb–Ti systems, J. Alloy. Compd., 472, 133, 10.1016/j.jallcom.2008.05.008 Feufel, 1997, Investigation of the Al–Mg–Si system by experiments and thermodynamic calculations, J. Alloy. Compd., 247, 31, 10.1016/S0925-8388(96)02655-2 Witusiewicz, 2008, The Al–B–Nb–Ti system. III: thermodynamic re-evaluation of the constituent binary system Al–Ti, J. Alloy. Compd., 465, 64, 10.1016/j.jallcom.2007.10.061 Saunders, 1998, System Al–V, 2, 95 Gustafson, 1985, A thermodynamic evaluation of the Fe–C system, Scand. J. Metall., 14, 259 Huang, 1989, An assessment of the Fe–Mn system, Calphad, 13, 243, 10.1016/0364-5916(89)90004-7 Du, 1993, A reevaluation of the Fe–N and Fe–C–N systems, J. Phase Equilib., 14, 682, 10.1007/BF02667880 Lacaze, 1991, An assessment of the Fe–C–Si system, Metall. Trans. A, 22, 2211, 10.1007/BF02664987 Dumitrescu, 1998, Comparison of Fe–Ti assessments, J. Phase Equilib., 19, 441, 10.1361/105497198770341923 Huang, 1991, A thermodynamic evaluation of the Fe–V–C system, Z. Metallkd., 82, 391 Djurovic, 2010, Thermodynamic assessment of the Mn–C system, Calphad, 34, 279, 10.1016/j.calphad.2010.05.002 Qiu, 1993, Predictive approach to entropy of manganese nitrides and calculation of the Mn–N phase diagram, Z. Metallkd., 81, 11 Tibballs, 1998, System Mn–Si, 2, 236 Saunders, 1998, System Mn–Ti, 2, 241 Huang, 1991, A thermodynamic analysis of the Mn–V And Fe–Mn–V systems, Calphad, 15, 195, 10.1016/0364-5916(91)90018-F Fernandes, 2002, Thermodynamic modeling of the Nb–Si system, Intermetallics, 10, 993, 10.1016/S0966-9795(02)00125-5 Zhang, 2001, Thermodynamic assessment of the Nb–Ti system, Calphad, 25, 305, 10.1016/S0364-5916(01)00051-7 Hari Kumar, 1994, Thermodynamic calculation of Nb–Ti–V phase diagram, Calphad, 18, 71, 10.1016/0364-5916(94)90008-6 Gröbner, 1996, Thermodynamic calculation of the ternary system Al–Si–C, Calphad, 20, 247, 10.1016/S0364-5916(96)00027-2 Ma, 2003, Thermodynamic assessment of the Si–N system, Calphad, 27, 383, 10.1016/j.calphad.2003.12.005 Seifert, 1996, Thermodynamic optimization of the Ti–Si system, Z. Metallkd., 87, 2 Rand, 1998, System Si–V, 2, 270 Dumitrescu, 1999, A reassessment of Ti–C–N based on a critical review of available assessments of Ti–N and Ti–C, Z. Metallkd., 90, 534 Zeng, 1996, Critical assessment and thermodynamic modeling of the Ti–N system, Z. Metallkd., 87, 540 Ghosh, 2002, Thermodynamic and kinetic modeling of the Cr–Ti–V system, J. Phase Equilib., 23, 310, 10.1361/105497102770331569 Huang, 1991, An assessment of the V–C system, Z. Metallkd., 82, 174 Ohtani, 1991, A thermodynamic assessment of the V–N system, Calphad, 15, 11, 10.1016/0364-5916(91)90022-C Qiu, 1993, A thermodynamic evaluation of the Fe–Mn–N system, Metall. Trans. A, 24, 629, 10.1007/BF02656632 Forsberg, 1993, Thermodynamic evaluation of the Fe–Mn–Si system and the γ/ε martensitic transformation, J. Phase Equilib., 14, 354, 10.1007/BF02668233 Miettinen, 1998, Reassessed thermodynamic solution phase data for ternary Fe–Si–C system, Calphad, 22, 231, 10.1016/S0364-5916(98)00026-1 Ohtani, 1991, A thermodynamic assessment of the Fe–N–V system, Calphad, 15, 25, 10.1016/0364-5916(91)90023-D Fernández Guillermet, 1991, Thermodynamic analysis of stable and metastable carbides in the Mn–V–C system and predicted phase diagram, Int. J. Thermophys., 12, 1077, 10.1007/BF00503520 Frisk, 2008, Thermodynamic modelling of multicomponent cubic Nb, Ti and V carbides/carbonitrides, Calphad, 32, 326, 10.1016/j.calphad.2007.11.007 Markström, 2008, Combined ab-initio and experimental assessment of A1–xBxC mixed carbides, Calphad, 32, 615, 10.1016/j.calphad.2008.07.014 Zeng, 2013, Thermodynamic assessment and applications of Ti–V–N system, Mater. Sci. Technol., 14, 1083, 10.1179/mst.1998.14.11.1083 Huang, 1991, Thermodynamic properties of the Fe–Mn–V–C system, Metall. Trans. A, 22, 1911, 10.1007/BF02669859 Mathon, 2009, Calphad-type assessment of the Fe–Nb–Ni ternary system, Calphad, 33, 136, 10.1016/j.calphad.2008.10.005 Syutkin, 2016, Experimental determination of the thermodynamic properties of the Laves phases in the Cr–Fe–Nb system, Thermochim. Acta, 624, 47, 10.1016/j.tca.2015.12.001 Meschel, 2006, The standard enthalpies of formation of some intermetallic compounds of transition metals by high temperature direct synthesis calorimetry, J. Alloy. Compd., 415, 143, 10.1016/j.jallcom.2005.08.006 Smith, 1966, The solubility of niobium (colombium) carbide in gamma iron, Trans. Metall. Soc. AIME, 236, 220 Mori, 1968, Thermodynamic properties of niobium carbides and nitrides in steels, Tetsu-to-Hagané, 54, 763, 10.2355/tetsutohagane1955.54.7_763 Lakshmanan, 1984, Solubility product for niobium carbide in austenite, Metall. Trans. A, 15, 541, 10.1007/BF02644978