Pre-martensitic phenomena in Ti40.7Hf9.5Ni44.8Cu5 shape memory alloy
Tài liệu tham khảo
Otsuka, 2005, Physical metallurgy of Ti–Ni based shape memory alloys, Progr. Mater. Sci., 50, 511, 10.1016/j.pmatsci.2004.10.001
Brailovski, 2003
Kurdyumov, 1949, On the “thermoelastic” equilibrium on martensitic transformations, Sov. Phys. Dokl., 66, 211
Christian, 2002
Kondrat’jev, 1985, Premartensitic states in metals, alloys and compounds: experimental results, structure models, classification, Phys. Met. Metall., 60, 1
Schryvers, 1990, On the interpretation of high resolution electron microscopy images of premartensitic microstructures in the Ni–Al β2 phase, Ultramicroscopy, 32, 241, 10.1016/0304-3991(90)90002-4
Sarkar, 2005, Evidence for strain glass in the ferroelastic-martensitic system Ti50−xNi50+x, Phys. Rev. Lett., 95, 205702, 10.1103/PhysRevLett.95.205702
Ji, 2013, Heterogeneities and strain glass behavior: role of nanoscale precipitates in low-temperature-aged Ti48.7Ni51.3 alloys, Phys. Rev. B, 87, 104110, 10.1103/PhysRevB.87.104110
Zhou, 2010, Strain glass in doped Ti50(Ni50−xDx) (D=Co Cr Mn) alloys: implication for the generality of strain glass in defect-containing ferroelastic systems, Acta Mater., 58, 5433, 10.1016/j.actamat.2010.06.019
Ren, 2011, Strain Glass and Strain Glass Transition, vol. 148, 201
Nii, 2010, Effect of randomness on ferroelastic transitions: disorder-induced hysteresis loop rounding in Ti–Nb–O martensitic alloy, Phys. Rev. B, 82, 214104, 10.1103/PhysRevB.82.214104
Tahara, 2011, Lattice modulation and superelasticity in oxygen-added beta-Ti alloys, Acta Mater., 59, 6208, 10.1016/j.actamat.2011.06.015
Kim, 2013, Nanodomain structure and its effect on abnormal thermal expansion behavior of a Ti–23Nb–2Zr–0.7Ta–1.2O alloy, Acta Mater., 61, 4874, 10.1016/j.actamat.2013.04.060
Tahara, 2013, Roll of interstitial atoms in the microstructure and non-linear elastic deformation behavior of Ti–Ni alloy, J. Alloys Compd., 577S, S404, 10.1016/j.jallcom.2011.12.113
Liu, 1994, Thermodynamic analysis of the martensitic transformation in NiTi-II. Effect of transformation cycling, Acta Metall. Mater., 42, 2407, 10.1016/0956-7151(94)90318-2
Resnina, 2008, Martensitic transformations in amorphous-crystalline Ti–Ni–Cu and Ti–Hf–Ni–Cu thin ribbons, EPJ ST, 158, 21
Zhao, 2001, Shape memory stainless steels, Adv. Mater. Process., 159, 33
Belyaev, 2011, Mechanical and functional properties of amorphous–crystalline thin ribbons of Ti50Ni25Cu25 and Ti40.7Hf9.5Ni44.8Cu5 shape memory alloys, Smart Mater. Struct., 20, 6, 10.1088/0964-1726/20/8/082003
Resnina, 2015, Pseudoelasticity effect in amorphous–crystalline Ti40.7Hf9.5Ni44.8Cu5 shape memory alloy, Smart Mater. Struct., 24, 8
Resnina, 2015, Influence of crystalline phase volume fraction on the two-way shape memory effect in amorphous–crystallineTi40.7Hf9.5Ni44.8Cu5 alloy, Mater. Sci. Eng. A, 627, 65, 10.1016/j.msea.2014.12.119
Sandrock, 1972, The pre-martensitic instability in near-equiatomic TiNi, Metall. Trans., 2, 2769, 10.1007/BF02813251
Chang, 2007, Internal friction of B2 → B19′ martensitic transformation of Ti50Ni50 shape memory alloy under isothermal conditions, Mater. Sci. Eng. A, 454–455, 379, 10.1016/j.msea.2006.11.157
Olson, 1975, Thermoelastic behavior in martensitic transformations, Scr. Metall., 9, 1247, 10.1016/0036-9748(75)90418-4
Salzbrenner, 1979, On the thermodynamics of thermoelastic martensitic transformations, Acta Metall., 27, 739, 10.1016/0001-6160(79)90107-X
Wollants, 1993, Thermally- and stress-induced thermoelastic martensitic transformations in the reference frame of equilibrium thermodynamics, Prog. Mater. Sci., 37, 227, 10.1016/0079-6425(93)90005-6
Ortin, 1988, Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations, Acta Metall., 36, 1873, 10.1016/0001-6160(88)90291-X
Resnina, 2015, Entropy change in the B2-B19' martensitic transformation in TiNi alloy, Thermochim. Acta, 602, 30, 10.1016/j.tca.2015.01.004