Pre-eclampsia part 1: current understanding of its pathophysiology
Tóm tắt
Từ khóa
Tài liệu tham khảo
Lindheimer, M. D., Roberts, J. M., Cunningham, G. C. & Chesley, L. in Chesley's Hypertensive Disorders in Pregnancy (eds Lindheimer, M. D., Roberts, J. M. & Cunningham, G. C.), 1–24 (Elsevier, 2009).
Romero, R., Lockwood, C., Oyarzun, E. & Hobbins, J. C. Toxemia: new concepts in an old disease. Semin. Perinatol. 12, 302–323 (1988).
Redman, C. W. & Sargent, I. L. Latest advances in understanding preeclampsia. Science 308, 1592–1594 (2005).
Steegers, E. A., von Dadelszen, P., Duvekot, J. J. & Pijnenborg, R. Pre-eclampsia. Lancet 376, 631–644 (2010).
American College of Obstetricians and Gynecologists Task Force on Hypertension in Pregnancy, Hypertension in Pregnancy [online] , (2013).
Lowe, S. A. et al. Guidelines for the management of hypertensive disorders of pregnancy 2008. Aust. NZ J. Obstet. Gynaecol. 49, 242–246 (2009).
Hutcheon, J. A., Lisonkova, S. & Joseph, K. S. Epidemiology of pre-eclampsia and the other hypertensive disorders of pregnancy. Best Pract. Res. Clin. Obstet. Gynaecol. 25, 391–403 (2011).
Thornton, C., Dahlen, H., Korda, A. & Hennessy, A. The incidence of preeclampsia and eclampsia and associated maternal mortality in Australia from population-linked datasets: 2000–2008 Am. J. Obstet. Gynecol. 208, 476 e471–e475 (2013).
Adu-Bonsaffoh, K., Samuel, O. A. & Binlinla, G. Maternal deaths attributable to hypertensive disorders in a tertiary hospital in Ghana. Int. J. Gynaecol Obstet. 123, 110–113 (2013).
Acosta-Sison, H. The relationship of hydatidiform mole to pre-eclampsia and eclampsia; a study of 85 cases. Am. J. Obstet. Gynecol. 71, 1279–1282 (1956).
Young, J. The aetiology of eclampsia and albuminuria and their relation to accidental haemorrhage: (an anatomical and experimental investigation.). Proc. R. Soc. Med. 7, 307–348 (1914).
Page, E. W. On the pathogenesis of pre-eclampsia and eclampsia. J. Obstet. Gynaecol Br. Commonw. 79, 883–894 (1972).
Rodgers, G. M., Taylor, R. N. & Roberts, J. M. Preeclampsia is associated with a serum factor cytotoxic to human endothelial cells. Am. J. Obstet. Gynecol. 159, 908–914 (1988).
Roberts, J. M., Edep, M. E., Goldfien, A. & Taylor, R. N. Sera from preeclamptic women specifically activate human umbilical vein endothelial cells in vitro: morphological and biochemical evidence. Am. J. Reprod. Immunol. 27, 101–108 (1992).
Sacks, G. P., Studena, K., Sargent, K. & Redman, C. W. Normal pregnancy and preeclampsia both produce inflammatory changes in peripheral blood leukocytes akin to those of sepsis. Am. J. Obstet. Gynecol. 179, 80–86 (1998).
Redman, C. W., Sacks, G. P. & Sargent, I. L. Preeclampsia: an excessive maternal inflammatory response to pregnancy. Am. J. Obstet. Gynecol. 180, 499–506 (1999).
Gervasi, M. T. et al. Phenotypic and metabolic characteristics of monocytes and granulocytes in preeclampsia. Am. J. Obstet. Gynecol. 185, 792–797 (2001).
Kenny, L. C., Baker, P. N. & Cunningham, F. G. in Chesley's Hypertensive Disorders in Pregnancy (eds Lindheimer, M. D., Roberts, J. M. & Cunningham, G. C.) 335–351 (Elsevier, 2009).
Lindheimer, M. D., Roberts, J. M., Cunningham, G. C. & Chesley, L. in Chesley's Hypertensive Disorders in Pregnancy (eds Lindheimer, M. D., Roberts, J. M. & Cunningham, G. C.) 25–36 (Elsevier, 2009).
Chaiworapongsa, T., Chaemsaithong, P., Korzeniewski, S. J., Yeo, L. & Romero, R. Pre-eclampsia part 2: prediction, prevention and management. Nat. Rev. Nephrol. http://dx.doi.org/10.1038/nrneph.2014.103 .
Lindheimer, M. D. W. Benson and Pamela Harer Seminar on History. The History of Preeclampsia and Eclampsia as Seen by a Nephrologist (2012).
Lever, J. C. Cases of puerperal convulsions with remarks. Guys Hosp. Rep. 2, 495–517 (1843).
Ballantyne, J. W. Sphygmographic tracings in puerperal eclampsia. Edinburgh Med. J. 30, 1007–1020 (1885).
Redman, C. W. & Sargent, I. L. Immunology of pre-eclampsia. Am. J. Reprod. Immunol. 63, 534–543 (2010).
Dekker, G., Robillard, P. Y. & Roberts, C. The etiology of preeclampsia: the role of the father. J. Reprod. Immunol. 89, 126–132 (2011).
Chesley, L. C., Annitto, J. E. & Cosgrove, R. A. The familial factor in toxemia of pregnancy. Obstet. Gynecol. 32, 303–311 (1968).
Thornton, J. G. & Macdonald, A. M. Twin mothers, pregnancy hypertension and pre-eclampsia. Br. J. Obstet. Gynaecol. 106, 570–575 (1999).
Goddard, K. A. et al. Candidate-gene association study of mothers with pre-eclampsia, and their infants, analyzing 775 SNPs in 190 genes. Hum. Hered. 63, 1–16 (2007).
Parimi, N. et al. Analytical approaches to detect maternal/fetal genotype incompatibilities that increase risk of pre-eclampsia. BMC Med. Genet. 9, 60 (2008).
Ward, K. & Lindheimer, M. D. in Chesley's Hypertensive Disorders in Pregnancy (eds Lindheimer, M. D., Roberts, J. M. & Cunningham, G. C.) 51–71 (Elsevier, 2009).
Zhao, L., Bracken, M. B., Dewan, A. T. & Chen, S. Association between the SERPINE1 (PAI-1) 4G/5G insertion/deletion promoter polymorphism (rs1799889) and pre-eclampsia: a systematic review and meta-analysis. Mol. Hum. Reprod. 19, 136–143 (2013).
Zhao, L. et al. Genome-wide association study identifies a maternal copy-number deletion in PSG11 enriched among preeclampsia patients. BMC Pregnancy Childbirth 12, 61 (2012).
Morgan, M. A. & Thurnau, G. R. Pregnancy-induced hypertension without proteinuria: is it true preeclampsia? South. Med. J. 81, 210–213 (1988).
Barton, J. R., O'Brien, J. M., Bergauer, N. K., Jacques, D. L. & Sibai, B. M. Mild gestational hypertension remote from term: progression and outcome. Am. J. Obstet. Gynecol. 184, 979–983 (2001).
Homer, C. S., Brown, M. A., Mangos, G. & Davis, G. K. Non-proteinuric pre-eclampsia: a novel risk indicator in women with gestational hypertension. J. Hypertens. 26, 295–302 (2008).
Lindheimer, M. D. & Kanter, D. Interpreting abnormal proteinuria in pregnancy: the need for a more pathophysiological approach. Obstet. Gynecol. 115, 365–375 (2010).
Meyer, N. L., Mercer, B. M., Friedman, S. A. & Sibai, B. M. Urinary dipstick protein: a poor predictor of absent or severe proteinuria. Am. J. Obstet. Gynecol. 170, 137–141 (1994).
Kuo, V. S., Koumantakis, G. & Gallery, E. D. Proteinuria and its assessment in normal and hypertensive pregnancy. Am. J. Obstet. Gynecol. 167, 723–728 (1992).
Lindow, S. W. & Davey, D. A. The variability of urinary protein and creatinine excretion in patients with gestational proteinuric hypertension. Br. J. Obstet. Gynaecol. 99, 869–872 (1992).
Verdonk, K. et al. Variation of urinary protein to creatinine ratio during the day in women with suspected pre-eclampsia. BJOG http://dx.doi.org/10.1111/1471-0528.12803 .
Cote, A. M. et al. Diagnostic accuracy of urinary spot protein:creatinine ratio for proteinuria in hypertensive pregnant women: systematic review. BMJ 336, 1003–1006 (2008).
Thangaratinam, S. et al. Estimation of proteinuria as a predictor of complications of pre-eclampsia: a systematic review. BMC Med. 7, 10 (2009).
Goodlin, R. C. Severe pre-eclampsia: another great imitator. Am. J. Obstet. Gynecol. 125, 747–753 (1976).
Weinstein, L. Syndrome of hemolysis, elevated liver enzymes, and low platelet count: a severe consequence of hypertension in pregnancy. Am. J. Obstet. Gynecol. 142, 159–167 (1982).
Romero, R. et al. Clinical significance of liver dysfunction in pregnancy-induced hypertension. Am. J. Perinatol. 5, 146–151 (1988).
Romero, R. et al. Clinical significance, prevalence, and natural history of thrombocytopenia in pregnancy-induced hypertension. Am. J. Perinatol. 6, 32–38 (1989).
Sibai, B. M. Diagnosis, controversies, and management of the syndrome of hemolysis, elevated liver enzymes, and low platelet count. Obstet. Gynecol. 103, 981–991 (2004).
von Dadelszen, P., Magee, L. A. & Roberts, J. M. Subclassification of preeclampsia. Hypertens. Pregnancy 22, 143–148 (2003).
Crispi, F. et al. Predictive value of angiogenic factors and uterine artery Doppler for early- versus late-onset pre-eclampsia and intrauterine growth restriction. Ultrasound Obstet. Gynecol. 31, 303–309 (2008).
Soto, E. et al. Late-onset preeclampsia is associated with an imbalance of angiogenic and anti-angiogenic factors in patients with and without placental lesions consistent with maternal underperfusion. J. Matern. Fetal Neonatal Med. 25, 498–507 (2012).
Parra-Cordero, M. et al. Prediction of early and late pre-eclampsia from maternal characteristics, uterine artery Doppler and markers of vasculogenesis during first trimester of pregnancy. Ultrasound Obstet. Gynecol. 41, 538–544 (2013).
Ogge, G. et al. Placental lesions associated with maternal underperfusion are more frequent in early-onset than in late-onset preeclampsia. J. Perinat. Med. 39, 641–652 (2011).
Sibai, B. M. Evaluation and management of severe preeclampsia before 34 weeks' gestation. Am. J. Obstet. Gynecol. 205, 191–198 (2011).
Ogden, E., Hildebrand, G. J. & Page, E. W. Rise of blood pressure during ischemia of gravid uterus. Proc. Soc. Exp. Bio Med. 43, 49–51 (1940).
Lunell, N. O., Nylund, L. E., Lewander, R. & Sarby, B. Uteroplacental blood flow in pre-eclampsia measurements with indium-113m and a computer-linked gamma camera. Clin. Exp. Hypertens. B 1, 105–117 (1982).
Brosens, I., Robertson, W. B. & Dixon, H. G. The physiological response of the vessels of the placental bed to normal pregnancy. J. Pathol. Bacteriol. 93, 569–579 (1967).
Brosens, I. & Renaer, M. On the pathogenesis of placental infarcts in pre-eclampsia. J. Obstet. Gynaecol Br. Commonw. 79, 794–799 (1972).
Hertig, A. T. Vascular pathology in hypertensive albuminuric toxemias of pregnancy. Clinics 4, 1011–1015 (1945).
De Wolf, F., Robertson, W. B. & Brosens, I. The ultrastructure of acute atherosis in hypertensive pregnancy. Am. J. Obstet. Gynecol. 123, 164–174 (1975).
Robertson, W. B., Brosens, I. & Dixon, H. G. The pathological resonse of the vessels of the placental bed to hypertensive pregnancy. J. Pathol. Bacteriol. 93, 581–592 (1967).
Labarrere, C. A. Acute atherosis. A histopathological hallmark of immune aggression? Placenta 9, 95–108 (1988).
Staff, A. C., Dechend, R. & Redman, C. W. Review: Preeclampsia, acute atherosis of the spiral arteries and future cardiovascular disease: two new hypotheses. Placenta 34 (Suppl.), S73–S78 (2013).
Brosens, I., Pijnenborg, R., Vercruysse, L. & Romero, R. The “Great Obstetrical Syndromes” are associated with disorders of deep placentation. Am. J. Obstet. Gynecol. 204, 193–201 (2011).
Khong, T. Y., Liddell, H. S. & Robertson, W. B. Defective haemochorial placentation as a cause of miscarriage: a preliminary study. Br. J. Obstet. Gynaecol. 94, 649–655 (1987).
Ball, E., Bulmer, J. N., Ayis, S., Lyall, F. & Robson, S. C. Late sporadic miscarriage is associated with abnormalities in spiral artery transformation and trophoblast invasion. J. Pathol. 208, 535–542 (2006).
Brosens, I. A., Robertson, W. B. & Dixon, H. G. The role of the spiral arteries in the pathogenesis of preeclampsia. Obstet. Gynecol. Annu. 1, 177–191 (1972).
Khong, T. Y., De Wolf, F., Robertson, W. B. & Brosens, I. Inadequate maternal vascular response to placentation in pregnancies complicated by pre-eclampsia and by small-for-gestational age infants. Br. J. Obstet. Gynaecol. 93, 1049–1059 (1986).
Dommisse, J. & Tiltman, A. J. Placental bed biopsies in placental abruption. Br. J. Obstet. Gynaecol. 99, 651–654 (1992).
Kim, Y. M. et al. Failure of physiologic transformation of the spiral arteries in patients with preterm labor and intact membranes. Am. J. Obstet. Gynecol. 189, 1063–1069 (2003).
Kim, Y. M. et al. Failure of physiologic transformation of the spiral arteries in the placental bed in preterm premature rupture of membranes. Am. J. Obstet. Gynecol. 187, 1137–1142 (2002).
Pijnenborg, R. & Brosens, I. in Placental Bed Disorders: Basic Science and its Translation to Obstetrics (eds Pijnenborg, R., Brosens, I. & Romero, R.) 97–108 (Cambridge University Press, 2010).
Zhou, Y., Damsky, C. H. & Fisher, S. J. Preeclampsia is associated with failure of human cytotrophoblasts to mimic a vascular adhesion phenotype. One cause of defective endovascular invasion in this syndrome? J. Clin. Invest. 99, 2152–2164 (1997).
Rosenfeld, C. R., Roy, T. & Cox, B. E. Mechanisms modulating estrogen-induced uterine vasodilation. Vascul. Pharmacol. 38, 115–125 (2002).
Osol, G. & Moore, L. G. Maternal uterine vascular remodeling during pregnancy. Microcirculation 21, 38–47 (2014).
Burton, G. J., Watson, A. L., Hempstock, J., Skepper, J. N. & Jauniaux, E. Uterine glands provide histiotrophic nutrition for the human fetus during the first trimester of pregnancy. J. Clin. Endocrinol. Metab. 87, 2954–2959 (2002).
Burton, G. J., Hempstock, J. & Jauniaux, E. Nutrition of the human fetus during the first trimester—a review. Placenta 22 (Suppl. A), S70–S77 (2001).
Jauniaux, E. et al. Onset of maternal arterial blood flow and placental oxidative stress. A possible factor in human early pregnancy failure. Am. J. Pathol. 157, 2111–2122 (2000).
Genbacev, O., Joslin, R., Damsky, C. H., Polliotti, B. M. & Fisher, S. J. Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J. Clin. Invest. 97, 540–550 (1996).
Caniggia, I. et al. Hypoxia-inducible factor-1 mediates the biological effects of oxygen on human trophoblast differentiation through TGFβ(3). J. Clin. Invest. 105, 577–587 (2000).
Rajakumar, A., Brandon, H. M., Daftary, A., Ness, R. & Conrad, K. P. Evidence for the functional activity of hypoxia-inducible transcription factors overexpressed in preeclamptic placentae. Placenta 25, 763–769 (2004).
Tal, R. et al. Effects of hypoxia-inducible factor-1α overexpression in pregnant mice: possible implications for preeclampsia and intrauterine growth restriction. Am. J. Pathol. 177, 2950–2962 (2010).
Kanasaki, K. et al. Deficiency in catechol-O-methyltransferase and 2-methoxyoestradiol is associated with pre-eclampsia. Nature 453, 1117–1121 (2008).
Palmer, K. et al. Severe early-onset preeclampsia is not associated with a change in placental catechol O-methyltransferase (COMT) expression. Am. J. Pathol. 178, 2484–2488 (2011).
Seol, H. J., Cho, G. J., Oh, M. J. & Kim, H. J. 2-methoxyoestradiol levels and placental catechol-O-methyltransferase expression in patients with late-onset preeclampsia. Arch. Gynecol. Obstet. 287, 881–886 (2013).
Redman, C. W. & Sargent, I. L. Placental stress and pre-eclampsia: a revised view. Placenta 30 (Suppl. A), S38–S42 (2009).
Brosens, J. J., Parker, M. G., McIndoe, A., Pijnenborg, R. & Brosens, I. A. A role for menstruation in preconditioning the uterus for successful pregnancy. Am. J. Obstet. Gynecol. 200, 615.e1–615.e6 (2009).
Moffett, A. & Hiby, S. E. How does the maternal immune system contribute to the development of preeclampsia? Placenta 28 (Suppl. A), S51–S56 (2007).
Zhang, K. & Kaufman, R. J. From endoplasmic-reticulum stress to the inflammatory response. Nature 454, 455–462 (2008).
Burton, G. J., Yung, H. W., Cindrova-Davies, T. & Charnock-Jones, D. S. Placental endoplasmic reticulum stress and oxidative stress in the pathophysiology of unexplained intrauterine growth restriction and early onset preeclampsia. Placenta 30 (Suppl. A), S43–S48 (2009).
Huppertz, B., Kadyrov, M. & Kingdom, J. C. Apoptosis and its role in the trophoblast. Am. J. Obstet. Gynecol. 195, 29–39 (2006).
Redman, C. W. & Sargent, I. L. Microparticles and immunomodulation in pregnancy and pre-eclampsia. J. Reprod. Immunol. 76, 61–67 (2007).
Lian, I. A. et al. Increased endoplasmic reticulum stress in decidual tissue from pregnancies complicated by fetal growth restriction with and without pre-eclampsia. Placenta 32, 823–829 (2011).
Burton, G. J. & Jauniaux, E. Oxidative stress. Best Pract Res. Clin. Obstet. Gynaecol. 25, 287–299 (2011).
Cindrova-Davies, T., Spasic-Boskovic, O., Jauniaux, E., Charnock-Jones, D. S. & Burton, G. J. Nuclear factor-κB, p38, and stress-activated protein kinase mitogen-activated protein kinase signaling pathways regulate proinflammatory cytokines and apoptosis in human placental explants in response to oxidative stress: effects of antioxidant vitamins. Am. J. Pathol. 170, 1511–1520 (2007).
Martin, C. B. Jr, McGaughey, H. S. Jr, Kaiser, I. H., Donner, M. W. & Ramsey, E. M. Intermittent functioning of the uteroplacental arteries. Am. J. Obstet. Gynecol. 90, 819–823 (1964).
Burton, G. J., Woods, A. W., Jauniaux, E. & Kingdom, J. C. Rheological and physiological consequences of conversion of the maternal spiral arteries for uteroplacental blood flow during human pregnancy. Placenta 30, 473–482 (2009).
Many, A., Hubel, C. A., Fisher, S. J., Roberts, J. M. & Zhou, Y. Invasive cytotrophoblasts manifest evidence of oxidative stress in preeclampsia. Am. J. Pathol. 156, 321–331 (2000).
Vaughan, J. E. & Walsh, S. W. Oxidative stress reproduces placental abnormalities of preeclampsia. Hypertens. Pregnancy 21, 205–223 (2002).
George, E. M. & Granger, J. P. Heme oxygenase in pregnancy and preeclampsia. Curr. Opin. Nephrol. Hypertens. 22, 156–162 (2013).
Zhao, H., Wong, R. J., Kalish, F. S., Nayak, N. R. & Stevenson, D. K. Effect of heme oxygenase-1 deficiency on placental development. Placenta 30, 861–868 (2009).
Nakamura, M. et al. Cellular mRNA expressions of anti-oxidant factors in the blood of preeclamptic women. Prenat Diagn. 29, 691–696 (2009).
Lash, G. E. et al. Relationship between tissue damage and heme oxygenase expression in chorionic villi of term human placenta. Am. J. Physiol. Heart Circ. Physiol. 284, H160–H167 (2003).
Farina, A. et al. Gene expression in chorionic villous samples at 11 weeks' gestation from women destined to develop preeclampsia. Prenat. Diagn. 28, 956–961 (2008).
George, E. M. et al. Induction of heme oxygenase 1 attenuates placental ischemia-induced hypertension. Hypertension 57, 941–948 (2011).
Costantine, M. M. et al. Using pravastatin to improve the vascular reactivity in a mouse model of soluble fms-like tyrosine kinase-1-induced preeclampsia. Obstet. Gynecol. 116, 114–120 (2010).
Gant, N. F., Chand, S., Whalley, P. J. & MacDonald, P. C. The nature of pressor responsiveness to angiotensin II in human pregnancy. Obstet. Gynecol. 43, 854 (1974).
Dechend, R., Luft, F. C. & Lindheimer, M. in Chesley's Hypertensive Disorders in Pregnancy (eds Lindheimer, M. D., Roberts, J. M. & Cunningham, G. C.) 287–296 (Elsevier, 2009).
Wallukat, G. et al. Patients with preeclampsia develop agonistic autoantibodies against the angiotensin AT1 receptor. J. Clin. Invest. 103, 945–952 (1999).
Dechend, R. et al. Agonistic autoantibodies to the AT1 receptor in a transgenic rat model of preeclampsia. Hypertension 45, 742–746 (2005).
Zhou, C. C. et al. Angiotensin receptor agonistic autoantibodies induce pre-eclampsia in pregnant mice. Nat. Med. 14, 855–862 (2008).
Parrish, M. R. et al. The effect of immune factors, tumor necrosis factor-alpha, and agonistic autoantibodies to the angiotensin II type I receptor on soluble fms-like tyrosine-1 and soluble endoglin production in response to hypertension during pregnancy. Am. J. Hypertens. 23, 911–916 (2010).
Xia, Y. & Kellems, R. E. Angiotensin receptor agonistic autoantibodies and hypertension: preeclampsia and beyond. Circ. Res. 113, 78–87 (2013).
Li, J., LaMarca, B. & Reckelhoff, J. F. A model of preeclampsia in rats: the reduced uterine perfusion pressure (RUPP) model. Am. J. Physiol. Heart Circ. Physiol. 303, H1–H8 (2012).
Dhillion, P. et al. IL-17-mediated oxidative stress is an important stimulator of AT1-AA and hypertension during pregnancy. Am. J. Physiol. Regul. Integr Comp. Physiol. 303, R353–R358 (2012).
Girardi, G., Yarilin, D., Thurman, J. M., Holers, V. M. & Salmon, J. E. Complement activation induces dysregulation of angiogenic factors and causes fetal rejection and growth restriction. J. Exp. Med. 203, 2165–2175 (2006).
Herse, F. & LaMarca, B. Angiotensin II type 1 receptor autoantibody (AT1-AA)-mediated pregnancy hypertension. Am. J. Reprod. Immunol. 69, 413–418 (2013).
Novotny, S. R. et al. Activating autoantibodies to the angiotensin II type I receptor play an important role in mediating hypertension in response to adoptive transfer of CD4+ T lymphocytes from placental ischemic rats. Am. J. Physiol. Regul. Integr Comp. Physiol. 302, R1197–1201 (2012).
Herse, F. et al. Prevalence of agonistic autoantibodies against the angiotensin II type 1 receptor and soluble fms-like tyrosine kinase 1 in a gestational age-matched case study. Hypertension 53, 393–398 (2009).
Stepan, H., Wallukat, G., Schultheiss, H. P., Faber, R. & Walther, T. Is parvovirus B19 the cause for autoimmunity against the angiotensin II type receptor? J. Reprod. Immunol. 73, 130–134 (2007).
Naccasha, N. et al. Phenotypic and metabolic characteristics of monocytes and granulocytes in normal pregnancy and maternal infection. Am. J. Obstet. Gynecol. 185, 1118–1123 (2001).
Lau, S. Y. et al. Tumor necrosis factor-α, interleukin-6, and interleukin-10 levels are altered in preeclampsia: a systematic review and meta-analysis. Am. J. Reprod. Immunol. 70, 412–427 (2013).
McCarthy, F. P., Kingdom, J. C., Kenny, L. C. & Walsh, S. K. Animal models of preeclampsia: uses and limitations. Placenta 32, 413–419 (2011).
Gervasi, M. T. et al. Phenotypic and metabolic characteristics of maternal monocytes and granulocytes in preterm labor with intact membranes. Am. J. Obstet. Gynecol. 185, 1124–1129 (2001).
Gervasi, M. T. et al. Maternal intravascular inflammation in preterm premature rupture of membranes. J. Matern. Fetal Neonatal Med. 11, 171–175 (2002).
Sabatier, F. et al. Neutrophil activation in preeclampsia and isolated intrauterine growth restriction. Am. J. Obstet. Gynecol. 183, 1558–1563 (2000).
Ogge, G. et al. Leukocytes of pregnant women with small-for-gestational age neonates have a different phenotypic and metabolic activity from those of women with preeclampsia. J. Matern. Fetal Neonatal Med. 23, 476–487 (2010).
Roberts, J. M. et al. Preeclampsia: an endothelial cell disorder. Am. J. Obstet. Gynecol. 161, 1200–1204 (1989).
Chaiworapongsa, T. et al. Soluble adhesion molecule profile in normal pregnancy and pre-eclampsia. J. Matern. Fetal Neonatal Med. 12, 19–27 (2002).
Bretelle, F. et al. Maternal endothelial soluble cell adhesion molecules with isolated small for gestational age fetuses: comparison with pre-eclampsia. BJOG 108, 1277–1282 (2001).
Bussolino, F., Benedetto, C., Massobrio, M. & Camussi, G. Maternal vascular prostacyclin activity in pre-eclampsia. Lancet 2, 702 (1980).
Walsh, S. W. Preeclampsia: an imbalance in placental prostacyclin and thromboxane production. Am. J. Obstet. Gynecol. 152, 335–340 (1985).
Freedman, J. E. et al. Deficient platelet-derived nitric oxide and enhanced hemostasis in mice lacking the NOSIII gene. Circ. Res. 84, 1416–1421 (1999).
Yallampalli, C. & Garfield, R. E. Inhibition of nitric oxide synthesis in rats during pregnancy produces signs similar to those of preeclampsia. Am. J. Obstet. Gynecol. 169, 1316–1320 (1993).
Cadroy, Y. et al. Evaluation of six markers of haemostatic system in normal pregnancy and pregnancy complicated by hypertension or pre-eclampsia. Br. J. Obstet. Gynaecol. 100, 416–420 (1993).
Chaiworapongsa, T. et al. Evidence of in vivo generation of thrombin in patients with small-for-gestational-age fetuses and pre-eclampsia. J. Matern. Fetal Neonatal Med. 11, 362–367 (2002).
Kobayashi, T., Tokunaga, N., Sugimura, M., Kanayama, N. & Terao, T. Predictive values of coagulation/fibrinolysis parameters for the termination of pregnancy complicated by severe preeclampsia. Semin. Thromb. Hemost. 27, 137–141 (2001).
Sharma, S. K., Philip, J., Whitten, C. W., Padakandla, U. B. & Landers, D. F. Assessment of changes in coagulation in parturients with preeclampsia using thromboelastography. Anesthesiology 90, 385–390 (1999).
Fakhouri, F., Vercel, C. & Fremeaux-Bacchi, V. Obstetric nephrology: AKI and thrombotic microangiopathies in pregnancy. Clin. J. Am. Soc. Nephrol. 7, 2100–2106 (2012).
Ferrara, N. et al. Heterozygous embryonic lethality induced by targeted inactivation of the VEGF gene. Nature 380, 439–442 (1996).
Torry, D. S., Wang, H. S., Wang, T. H., Caudle, M. R. & Torry, R. J. Preeclampsia is associated with reduced serum levels of placenta growth factor. Am. J. Obstet. Gynecol. 179, 1539–1544 (1998).
Maynard, S. E. et al. Excess placental soluble fms-like tyrosine kinase 1 (sFlt1) may contribute to endothelial dysfunction, hypertension, and proteinuria in preeclampsia. J. Clin. Invest. 111, 649–658 (2003).
Yang, J. C. et al. A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N. Engl. J. Med. 349, 427–434 (2003).
Levine, R. J. et al. Circulating angiogenic factors and the risk of preeclampsia. N. Engl. J. Med. 350, 672–683 (2004).
Chaiworapongsa, T. et al. Evidence supporting a role for blockade of the vascular endothelial growth factor system in the pathophysiology of preeclampsia. Young Investigator Award. Am. J. Obstet. Gynecol. 190, 1541–1550 (2004).
Chaiworapongsa, T. et al. Plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated prior to the clinical diagnosis of pre-eclampsia. J. Matern. Fetal Neonatal Med. 17, 3–18 (2005).
Widmer, M. et al. Mapping the theories of preeclampsia and the role of angiogenic factors: a systematic review. Obstet. Gynecol. 109, 168–180 (2007).
Romero, R. et al. A longitudinal study of angiogenic (placental growth factor) and anti-angiogenic (soluble endoglin and soluble vascular endothelial growth factor receptor-1) factors in normal pregnancy and patients destined to develop preeclampsia and deliver a small for gestational age neonate. J. Matern. Fetal Neonatal Med. 21, 9–23 (2008).
Bujold, E. et al. Evidence supporting that the excess of the sVEGFR-1 concentration in maternal plasma in preeclampsia has a uterine origin. J. Matern. Fetal Neonatal Med. 18, 9–16 (2005).
Maynard, S. E. et al. Gestational angiogenic biomarker patterns in high risk preeclampsia groups. Am. J. Obstet. Gynecol. 53, e1–e9 (2013).
Wolf, M. et al. Circulating levels of the antiangiogenic marker sFLT-1 are increased in first versus second pregnancies. Am. J. Obstet. Gynecol. 193, 16–22 (2005).
Bdolah, Y. et al. Twin pregnancy and the risk of preeclampsia: bigger placenta or relative ischemia? Am. J. Obstet. Gynecol. 198, 428.e1–428.e6 (2008).
Cohen, A. et al. Circulating levels of the antiangiogenic marker soluble FMS-like tyrosine kinase 1 are elevated in women with pregestational diabetes and preeclampsia: angiogenic markers in preeclampsia and preexisting diabetes. Diabetes Care 30, 375–377 (2007).
Levine, R. J. et al. Soluble endoglin and other circulating antiangiogenic factors in preeclampsia. N. Engl. J. Med. 355, 992–1005 (2006).
Rajakumar, A. et al. Extra-placental expression of vascular endothelial growth factor receptor-1, (Flt-1) and soluble Flt-1 (sFlt-1), by peripheral blood mononuclear cells (PBMCs) in normotensive and preeclamptic pregnant women. Placenta 26, 563–573 (2005).
Rajakumar, A. et al. Novel soluble Flt-1 isoforms in plasma and cultured placental explants from normotensive pregnant and preeclamptic women. Placenta 30, 25–34 (2009).
Sela, S. et al. A novel human-specific soluble vascular endothelial growth factor receptor 1: cell-type-specific splicing and implications to vascular endothelial growth factor homeostasis and preeclampsia. Circ. Res. 102, 1566–1574 (2008).
Gilbert, J. S., Babcock, S. A. & Granger, J. P. Hypertension produced by reduced uterine perfusion in pregnant rats is associated with increased soluble fms-like tyrosine kinase-1 expression. Hypertension 50, 1142–1147 (2007).
Makris, A. et al. Uteroplacental ischemia results in proteinuric hypertension and elevated sFLT-1. Kidney Int. 71, 977–984 (2007).
Rajakumar, A. et al. Transcriptionally active syncytial aggregates in the maternal circulation may contribute to circulating soluble fms-like tyrosine kinase 1 in preeclampsia. Hypertension 59, 256–264 (2012).
Lockwood, C. J. et al. Thrombin regulates soluble fms-like tyrosine kinase-1 (sFlt-1) expression in first trimester decidua: implications for preeclampsia. Am. J. Pathol. 170, 1398–1405 (2007).
Nagamatsu, T. et al. Cytotrophoblasts up-regulate soluble fms-like tyrosine kinase-1 expression under reduced oxygen: an implication for the placental vascular development and the pathophysiology of preeclampsia. Endocrinology 145, 4838–4845 (2004).
Kendall, R. L. & Thomas, K. A. Inhibition of vascular endothelial cell growth factor activity by an endogenously encoded soluble receptor. Proc. Natl Acad. Sci. USA 90, 10705–10709 (1993).
Esser, S. et al. Vascular endothelial growth factor induces endothelial fenestrations in vitro. J. Cell Biol. 140, 947–959 (1998).
Sandrim, V. C. et al. Nitric oxide formation is inversely related to serum levels of antiangiogenic factors soluble fms-like tyrosine kinase-1 and soluble endogline in preeclampsia. Hypertension 52, 402–407 (2008).
Cindrova-Davies, T., Sanders, D. A., Burton, G. J. & Charnock-Jones, D. S. Soluble FLT1 sensitizes endothelial cells to inflammatory cytokines by antagonizing VEGF receptor-mediated signalling. Cardiovasc. Res. 89, 671–679 (2011).
Eremina, V. et al. Glomerular-specific alterations of VEGF-A expression lead to distinct congenital and acquired renal diseases. J. Clin. Invest. 111, 707–716 (2003).
Craici, I. M. et al. Podocyturia predates proteinuria and clinical features of preeclampsia: longitudinal prospective study. Hypertension 61, 1289–1296 (2013).
Chen, G. et al. Effects of angiogenic factors, antagonists, and podocyte injury on development of proteinuria in preeclampsia. Reprod. Sci. 20, 579–588 (2013).
Venkatesha, S. et al. Soluble endoglin contributes to the pathogenesis of preeclampsia. Nat. Med. 12, 642–649 (2006).
McAllister, K. A. et al. Endoglin, a TGF-β binding protein of endothelial cells, is the gene for hereditary haemorrhagic telangiectasia type 1. Nat. Genet. 8, 345–351 (1994).
Reimer, T. et al. Angiogenic factors and acute-phase proteins in serum samples of preeclampsia and HELLP patients: a matched-pair analysis. J. Matern. Fetal Neonatal Med. 26, 263–269 (2013).
Young, B. et al. The use of angiogenic biomarkers to differentiate non-HELLP related thrombocytopenia from HELLP syndrome. J. Matern. Fetal Neonatal Med. 23, 366–370 (2010).
Chaiworapongsa, T. et al. The maternal plasma soluble vascular endothelial growth factor receptor-1 concentration is elevated in SGA and the magnitude of the increase relates to Doppler abnormalities in the maternal and fetal circulation. J. Matern. Fetal Neonatal Med. 21, 25–40 (2008).
Chaiworapongsa, T. et al. A subset of patients destined to develop spontaneous preterm labor has an abnormal angiogenic/anti-angiogenic profile in maternal plasma: evidence in support of pathophysiologic heterogeneity of preterm labor derived from a longitudinal study. J. Matern. Fetal Neonatal Med. 22, 1122–1139 (2009).
Romero, R. et al. An imbalance between angiogenic and anti-angiogenic factors precedes fetal death in a subset of patients: results of a longitudinal study. J. Matern. Fetal Neonatal Med. 23, 1384–1399 (2010).
Chaiworapongsa, T. et al. Maternal plasma concentrations of angiogenic/antiangiogenic factors in the third trimester of pregnancy to identify the patient at risk for stillbirth at or near term and severe late preeclampsia. Am. J. Obstet. Gynecol. 208, 287.e1–287.e15 (2013).
Whitten, A. E. et al. Evidence of an imbalance of angiogenic/antiangiogenic factors in massive perivillous fibrin deposition (maternal floor infarction): a placental lesion associated with recurrent miscarriage and fetal death. Am. J. Obstet. Gynecol. 208, 310.e1–310.e11 (2013).
Muttukrishna, S. et al. Soluble Flt-1 and PlGF: new markers of early pregnancy loss? PLoS ONE 6, e18041 (2011).
Signore, C. et al. Circulating angiogenic factors and placental abruption. Obstet. Gynecol. 108, 338–344 (2006).
Koga, K. et al. Elevated serum soluble fms-like tyrosine kinase 1 (sFlt1) level in women with hydatidiform mole. Fertil. Steril. 94, 305–308 (2010).
Bdolah, Y. et al. Circulating angiogenic proteins in trisomy 13. Am. J. Obstet. Gynecol. 194, 239–245 (2006).
Kusanovic, J. P. et al. Twin-to-twin transfusion syndrome: an antiangiogenic state? Am. J. Obstet. Gynecol. 198, 382.e1–382.e8 (2008).
Romero, R. The child is the father of the man. Prenat. Neonat. Med. 1, 8–11 (1996).
Romero, R. Prenatal medicine: the child is the father of the man. 1996. J. Matern. Fetal Neonatal Med. 22, 636–639 (2009).
Fraser, S. H. & Tudehope, D. I. Neonatal neutropenia and thrombocytopenia following maternal hypertension. J. Paediatr. Child Health 32, 31–34 (1996).
Sarhanis, P. & Pugh, D. H. Resolution of pre-eclampsia following intrauterine death of one twin. Br. J. Obstet. Gynaecol. 99, 159–160 (1992).
Conde-Agudelo, A., Villar, J. & Lindheimer, M. Maternal infection and risk of preeclampsia: systematic review and metaanalysis. Am. J. Obstet. Gynecol. 198, 7–22 (2008).
Leveno, K. J. & Cunningham, F. G. in Chesley's Hypertensive Disorders in Pregnancy (eds Lindheimer, M. D., Roberts, J. M. & Cunningham, G. C.), 389–414 (Elsevier, 2009).
Saftlas, A. F., Olson, D. R., Franks, A. L., Atrash, H. K. & Pokras, R. Epidemiology of preeclampsia and eclampsia in the United States, 1979–1986. Am. J. Obstet. Gynecol. 163, 460–465 (1990).
Zhang, J., Zeisler, J., Hatch, M. C. & Berkowitz, G. Epidemiology of pregnancy-induced hypertension. Epidemiol. Rev. 19, 218–232 (1997).
Eskenazi, B., Fenster, L. & Sidney, S. A multivariate analysis of risk factors for preeclampsia. JAMA 266, 237–241 (1991).
Bodnar, L. M., Ness, R. B., Markovic, N. & Roberts, J. M. The risk of preeclampsia rises with increasing prepregnancy body mass index. Ann. Epidemiol. 15, 475–482 (2005).
Branch, D. W., Silver, R. M., Blackwell, J. L., Reading, J. C. & Scott, J. R. Outcome of treated pregnancies in women with antiphospholipid syndrome: an update of the Utah experience. Obstet. Gynecol. 80, 614–620 (1992).
Lima, F. et al. A study of sixty pregnancies in patients with the antiphospholipid syndrome. Clin. Exp. Rheumatol. 14, 131–136 (1996).
Lie, R. T. et al. Fetal and maternal contributions to risk of pre-eclampsia: population based study. BMJ 316, 1343–1347 (1998).
Schieve, L. A., Handler, A., Hershow, R., Persky, V. & Davis, F. Urinary tract infection during pregnancy: its association with maternal morbidity and perinatal outcome. Am. J. Public Health 84, 405–410 (1994).