Prešić type results in 2-Banach spaces

Afrika Matematika - Tập 25 Số 4 - Trang 1043-1051 - 2014
Satish Shukla1
1Department of Applied Mathematics, Shri Vaishnav Institute of Technology and Science, Indore, India

Tóm tắt

Từ khóa


Tài liệu tham khảo

White, A.: 2-Banach spaces. Math. Nachr. 42, 43–60 (1969)

Iseki, K.: Fixed point theorems in 2-metric Space. Math Seminar Notes Kobe Univ. 3, 133–136 (1975)

Rao, K.P.R., Mustaq Ali, Md., Fisher, B.: Some Presic type generalizations of the Banach contraction principle. Math. Moravica 15(1), 41–47 (2011)

Ćirić, L.B., Prešić, S.B.: On Prešić type generalisation of Banach contraction principle. Acta. Math. Univ. Com., vol. LXXVI, No. 2, pp. 143–147 (2007)

Gangopadhyay, M., Saha, M., Baisnab, A.P.: Some fixed point theorems for contractive type mappings in 2-Banach Space. Int. J. Math. Comput. Sci. 3(4), 237–246 (2008)

Pǎcurar, M.: A multi-step iterative method for approximating common fixed points of Prešić-Rus type operators on metric spaces, Studia Univ. “Babeş-Bolyai”, Mathematica, vol. LV, Number 1 (2010)

Pǎcurar, M.: Approximating common fixed points of Prešić-Kannan type operators by a multi-step iterative method. An. Şt. Univ. Ovidius Constanţa 17(1), 153–168 (2009)

Pǎcurar, M.: Common fixed points for almost Prešić type operators. Carpathian J. Math. 28(1), 117–126 (2012)

Saha, M., Dey, D.: Fixed point of expansive mappings in a 2-Banach space. Int. J. Math. Sci. Eng. Appl. 4(IV), 355–362 (2010)

Khan, M.S., Berzig, M., Samet, B.: Some convergence results for iterative sequences of Prešić type and applications. Adv. Differ. Equ. (2012). doi: 10.1186/1687-1847-2012-38

Khan, M.S., Khan, M.D.: Involutions with fixed points in 2-Banach spaces. Int. J. Math. Math. Sci. 16(3), 429–434 (1993)

George, R., Reshma, K.P., Rajagopalan, R.: A generalised fixed point theorem of Prešić type in cone metric spaces and application to Morkov process. Fixed Point Theory Appl. (2011). doi: 10.1186/1687-1812-2011-85

Freese, R.W., Cho, Y.J.: Geometry of linear 2-normed space. Nova Science Publisher Inc, New York (2001)

Banach, S.: Sur les opérations dans les ensembles abstraits et leur application aux equations integrales. Fund. Math. 3, 133–181 (1922)

Gähler, S.: 2-metric Räume and ihre topologische strucktur. Math Nachr. 26, 115–148 (1963)

Gähler, S.: Lineare 2-normierte Räumen. Math. Nachr. 28, 1–43 (1964)

Gähler, S.: Über 2-Banach-Räume. Math. Nachr. 42, 335–347 (1969)

Prešić, S.B.: Sur la convergence des suites. Comptes. Rendus. de l’Acad. de Paris 260, 3828–3830 (1965)

Prešić, S.B.: Sur une classe d’inéquations aux différences finite et sur la convergence de certaines suites. Publ. de l’Inst. Math. Belgrade 5(19), 75–78 (1965)

Shukla, S., Fisher, B.: A generalization of Prešić type mappings in metric-like spaces. J. Oper. (2013). Article ID 368501

Shukla, S., Sen, R., Radenović, S.: Set-valued Prešić type contraction in metric spaces. An. Ştiinţ. Univ. Al. I. Cuza Iaşi. Mat. (N.S.) (2012, accepted).

Shukla, S., Sen, R.: Set-valued Prešić-Reich type mappings in metric spaces. Revista de la Real Academia de Ciencias Exactas, Fisicas y Naturales. Serie A. Matematicas. doi: 10.1007/s13398-012-0114-2

Malhotra, S.K., Shukla, S., Sen, R.: A generalization of Banach contraction principle in ordered cone metric spaces. J. Adv. Math. Stud. 5(2), 59–67 (2012)

Park, W.-G.: Approximate additive mapping in 2-Banach spaces and related topics. J. Math. Anal. Appl. 376, 193–202 (2011)

Chen, Y.Z.: A Prešić type contractive condition and its applications. Nonlinear Anal. (2009). doi: 10.1016/j.na.2009.03.006