Practical evaluation of four classification levels of Soil Taxonomy, Hungarian classification and WRB in terms of biomass production in a salt-affected alluvial plot

Geoderma - Tập 410 - Trang 115666 - 2022
Tibor Tóth1, Bence Gallai2, Tibor Novák3, Szabolcs Czigány4, András Makó1, Mihály Kocsis1, Mátyás Árvai1, János Mészáros1, Péter László1, Sándor Koós1, Kitti Balog1
1Institute for Soil Sciences, Centre for Agricultural Research, Hungary
2Department of Surveying and Remote Sensing, Institute of Geomatics and Civil Engineering, Faculty of Forestry, University of Sopron, Sopron, Hungary
3Department for Landscape Protection and Environmental Geography, University of Debrecen, Debrecen, Hungary
4Department of Physical and Environmental Geography, Institute of Geography and Earth Sciences, University of Pécs, Pécs, Hungary

Tài liệu tham khảo

Allgood, 1978, Utilization of soil characteristics in computing productivity ratings of Oklahoma soils, Soil Sci., 125, 359, 10.1097/00010694-197806000-00004 Arany, S. 1956. Salt affected soils and their reclamation. Mezőgazda Kiadó. Budapest. p. 407. (in Hungarian). Arnold, R.W. 2001. Soil classification principles. InSoil classification 2001: contributions to the International symposium “Soil Classification 2001”, 8-12 October 2001, Velence, Hungary(pp. 3-8). Beckett, 1971, The relation between cost and utility in soil survey: IV. Comparison of the utilities of soil maps produced by different survey procedures, and to different scales, J. Soil Sci., 22, 466, 10.1111/j.1365-2389.1971.tb01631.x Bidló, A. 2019. Invited commentaries to „Michéli Erika, Fuchs Márta, Szegi Tamás, Csorba Ádám, Dobos Endre, Szabóné Kele Gabriella: “Diagnostically renewed Hungarian soil classification: principles, structure, rules of classification” (2018.10.10.). Agrokémia és Talajtan, 68 (2), 345-354. DOI: 10.1556/0088.2019.00055 (in Hungarian). Brevik, 2016, Soil mapping, classification, and pedologic modeling: History and future directions, Geoderma, 264, 256, 10.1016/j.geoderma.2015.05.017 Buol, 2011 Bussay, 2012, Evaluation of aridity indices Using SPOT Normalized Difference Vegetation Index Values calculated over different time frames on Iberian rain-fed arable land, Arid Land Res. Manage., 26, 271, 10.1080/15324982.2012.694398 Butcher, 2018, Corn and soybean yield response to salinity influenced by soil texture, Agron. J., 110, 1243, 10.2134/agronj2017.10.0619 Cline, 1949, Basic principles of soil classification, Soil Sci., 67, 81, 10.1097/00010694-194902000-00002 de Sigmond, A. 1938. The principles of soil science. London. de Sigmond, 1927, Hungarian alkali soils and methods of their reclamation Di Gléria, 1962 Dotto, 2019, Soil classification based on spectral and environmental variables, Soil Discuss., 1 Dövényi, Z. (ed.) 2010. Inventory of microregions in Hungary, Second edition, Hungarian Academy of Sciences, Geographical Research Institute, Budapest. p. 876. (in Hungarian). Esfandiarpour, 2018, Comparing soil taxonomy and WRB systems to classify soils with clay-enriched horizons (A case study: arid and semi-arid regions of Iran), Desert, 23, 315 Fao–unesco., 1974, 1 Flynn, T., Triantafilis, J., Rozanov, A., Ellis, F., Lázaro-López, A., Watson, A., & Clarke, C. 202). Numerical soil horizon classification from South Africa’s legacy database. CATENA, 206, 105543. Grigal, 1969, Numerical classification of some forested Minnesota soils, Soil Sci. Soc. Am. J., 33, 433, 10.2136/sssaj1969.03615995003300030029x Hughes, 2014, End members, end points and extragrades in numerical soil classification, Geoderma, 226, 365, 10.1016/j.geoderma.2014.03.010 Hughes, 2018, Comparisons between USDA soil taxonomy and the Australian Soil Classification system II: Comparison of order, suborder and great group taxa, Geoderma, 322, 48, 10.1016/j.geoderma.2018.02.022 Hughes, 2017, Comparisons between USDA Soil Taxonomy and the Australian Soil Classification System I: Data harmonization, calculation of taxonomic distance and inter-taxa variation, Geoderma, 307, 198, 10.1016/j.geoderma.2017.08.009 Illés, 2011, Comparing and evaluating digital soil mapping methods in a Hungarian forest reserve, Can. J. Soil Sci., 91, 615, 10.4141/cjss2010-007 Jassó, 1989 Kitchen, 2003, Soil electrical conductivity and topography related to yield for three contrasting soil–crop systems, Agronomy J., 95, 483, 10.2134/agronj2003.4830 Krasilnikov, P., Arnold, R.W., Ibáñez, J.J. 2010. Soil classifications: their origin, the state-of-the-art and perspectives. InProceedings of the 19th World Congress of Soil Science: Soil solutions for a changing world, Brisbane, Australia, 1-6 August 2010. Symposium 1.4. 2 Soil classification benefits and constraints to pedology(pp. 19-22). International Union of Soil Sciences (IUSS), c/o Institut für Bodenforschung, Universität für Bodenkultur. 2009 Kubiëna, W.L. 1953. Bestimmungsbuch und Systematik der Böden Europas. Kusumawati, 2021, Sugarcane growth and yields in response to long-term monoculture practices under different soil orders, 012007 Lagacherie, 2000, Predicting soil properties over a region using sample information from a mapped reference area and digital elevation data: a conditional probability approach, Geoderma, 97, 187, 10.1016/S0016-7061(00)00038-0 Lóczy, 2020, Perspectives of land evaluation of floodplains under conditions of aridification based on the assessment of ecosystem services, Hungarian Geogr. Bull., 69, 227, 10.15201/hungeobull.69.3.1 Makó, A. 2019. Invited commentaries to „Michéli Erika, Fuchs Márta, Szegi Tamás, Csorba Ádám, Dobos Endre, Szabóné Kele Gabriella: “Diagnostically renewed Hungarian soil classification: principles, structure, rules of classification” (2018.10.10.). Agrokémia és Talajtan, 68 (2), 323-332. DOI: 10.1556/0088.2019.00052 (in Hungarian). Marti, 2007, Can wheat yield be assessed by early measurements of Normalized Difference Vegetation Index?, Ann. Appl. Biol., 150, 253, 10.1111/j.1744-7348.2007.00126.x Maynard, 2020, Numerical soil classification supports soil identification by citizen scientists using limited, simple soil observations, Soil Sci. Soc. Am. J., 84, 1675, 10.1002/saj2.20119 McBratney, 2003, On digital soil mapping, Geoderma, 117, 3, 10.1016/S0016-7061(03)00223-4 McKenzie, 1999, Spatial prediction of soil properties using environmental correlation, Geoderma, 89, 67, 10.1016/S0016-7061(98)00137-2 Ogunkunle, 1988, Combining soil map and soil analysis for improved yield prediction, Catena, 15, 529, 10.1016/0341-8162(88)90004-5 Pettorelli, 2013 Richards, L.A. 1954.Diagnosis and improvement of saline and alkali soils(No. 60). Soil and Water Conservative Research Branch, Agricultural Research Service, US Department of Agriculture. Rossiter, 2017, Accounting for taxonomic distance in accuracy assessment of soil class predictions, Geoderma, 292, 118, 10.1016/j.geoderma.2017.01.012 Salehi, 2018, Challenges of Soil Taxonomy and WRB in classifying soils: Some examples from Iranian soils, Bull. Geogr. Phys. Geogr. Ser., 14, 63, 10.2478/bgeo-2018-0005 Schuler, 2006, Soil mapping for land-use planning in a karst area of N Thailand with due consideration of local knowledge, J. Plant Nutr. Soil Sci., 169, 444, 10.1002/jpln.200521902 Shrader, W.D., Schaller, F.W., Pesek, J.T., Slusher, D.F., & Riecken, F.F.1960. Estimated crop yields on Iowa soils. U. S. Dept. Agr . andIowaAgr . Expt . Sta . Special Rpt. 25 , April1960. Simfukwe, 2011, Soil classification provides a poor indicator of carbon turnover rates in soil, Soil Biol. Biochem., 43, 1688, 10.1016/j.soilbio.2011.04.014 Soil Survey Staff, 2014 Sorokin, 2021, “Black soils” in the Russian Soil Classification system, the US Soil Taxonomy and the WRB: Quantitative correlation and implications for pedodiversity assessment, Catena, 196, 10.1016/j.catena.2020.104824 Stefanovits, P. 1963: Soils of Hungary. Akadémiai Kiadó, Budapest, Hungary (in Hungarian). Szabolcs, I. (Ed.), 1966. Handbook of the large-scale genetic soil mapping.. OMMI Genetikus Talajtérképek. Ser. 1. No. 9. Budapest. (In Hungarian). Szatmári, 2020, Elaborating Hungarian Segment of the Global Map of Salt-Affected Soils (GSSmap): National Contribution to an International Initiative, Remote Sensing, 12, 4073, 10.3390/rs12244073 Teal, 2006, In-season prediction of corn grain yield potential using normalized difference vegetation index, Agron. J., 98, 1488, 10.2134/agronj2006.0103 Tóth, G. 2019a. Invited commentaries to „Michéli Erika, Fuchs Márta, Szegi Tamás, Csorba Ádám, Dobos Endre, Szabóné Kele Gabriella: “Diagnostically renewed Hungarian soil classification: principles, structure, rules of classification”. Agrokémia és Talajtan, 68 (2), 333-344. (in Hungarian) DOI: 10.1556/0088.2019.00053. Tóth, G., Montanarella, L., Stolbovoy, V., Máté, F., Bódis, K., Jones, A., Panagos, P., Van Liedekerke, M. 2008. Soils of the European union.JRC Scientific and Technical Reports, Office for Official Publications of the European Communities, Luxembourg. Tóth, 2009, Designation of local varieties in the Hungarian soil classification system: Remarks from a viewpoint of land evaluation application, Eurasian Soil Sci., 42, 1448, 10.1134/S1064229309130043 Tóth, T. 2019b. Invited commentaries to „Michéli Erika, Fuchs Márta, Szegi Tamás, Csorba Ádám, Dobos Endre, Szabóné Kele Gabriella: “Diagnostically renewed Hungarian soil classification: principles, structure, rules of classification” . Agrokémia és Talajtan, 68(2), 315-321. (in Hungarian) DOI: 10.1556/0088.2019.00051. Tóth, 1996, Application of soil-vegetation correlation to optimal resolution mapping of solonetzic rangeland, Arid Land Res. Manage., 10, 1 Tóth, 1998, New approaches in salinity/sodicity mapping in Hungary, Agrokémia és Talajtan., 47, 76 Treitz, P. 1924. The nature and properties of salt-affected soils. Budapest. Van Huyssteen, 2013, Principles of soil classification and the future of the South African system, S. Afr. J. Plant Soil, 30, 23, 10.1080/02571862.2013.771752 Webster, 1968, Fundamental objections to the 7th approximation, J. Soil Sci., 19, 354, 10.1111/j.1365-2389.1968.tb01546.x Webster, 1971, Wilks's criterion: A measure for comparing the value of general purpose soil classifications, J. Soil Sci., 22, 254, 10.1111/j.1365-2389.1971.tb01612.x Webster, 1968, Quality and Usefulness of Soil Maps, Nature, 219, 680, 10.1038/219680a0 Webster, 1977, The effect of soil type and related factors on sugar beet yield, J. Agric. Sci., 88, 455, 10.1017/S0021859600034973 Wilson, 1985, Effectiveness of “ Soil Taxonomy” for prediction of soil chemical properties on Mollisols under a shifting cultivating system in the Ha'apai group, Kingdom of Tonga, South Pacific J. Nat. Sci., 7, 45 WRB, IUSS Working Group. 2015. World Reference Base for Soil Resources 2014, update 2015 International soil classification system for naming soils and creating legends for soil maps. World Soil Resources Reports No. 106. Food and Agriculture Organization of the United Nations, Rome. p. 192. Wuddivira, 2012, Estimation of soil clay content from hygroscopic water content measurements, Soil Sci. Soc. Am. J., 76, 1529, 10.2136/sssaj2012.0034 Yost, 1981, Partitioning variation in soil chemical properties of some Andepts using Soil Taxonomy, Soil Sci. Soc. Am. J., 45, 373, 10.2136/sssaj1981.03615995004500020029x Zalatnai, 2007, Community boundaries and edaphic factors in saline-sodic grassland communities along an elevation gradient, Tiscia, 36, 7