Practical Synthesis of 1,4-Dihydropyridines on Heterogeneous Sulfonicmodified Silica (SBA-15-SO3H) Catalyst Under Mild Condition

Current Organic Synthesis - Tập 20 Số 8 - Trang 880-889 - 2023
Tran Quang Hung1,2, Ban Van Phuc1,2, Pham Thị Thanh Loan3, Do Thi Lan Nhi3, Hien Nguyen4, Xuan Hoan Vu2, Dang Van Do3, Tuan Thanh Dang3
1Graduate University of Science and Technology, Vietnam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
2Insitute of Chemistry, VietNam Academy of Science and Technology, 18 Hoang Quoc Viet, Cau Giay, Ha Noi, Viet Nam
3Faculty of Chemistry, University of Science, Viet Nam National University Ha Noi, 19 Le Thanh Tong, Phan Chu Trinh, Hoan Kiem, Ha Noi, Viet Nam
4Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Ha Noi, Vietnam.

Tóm tắt

Aims: Synthesis of 1,4-Dihydropyridines (1,4-DHP) using heterogeneous catalyst un-der mild condition Objective: Our objective is to explore new applications of non-metal heterogeneous catalysts in the synthesis of 1,4-DHP derivatives in a greener and more efficient approach. Methods: A greener and more efficient method for the synthesis of 1,4-DHPs and an asymmetric 1,4-DHP (Felodipine drug) was successfully developed in high yields using a heterogeneous SBA-15-SO3H catalyst. Results: A series of symmetric 1,4-DHP and an asymmetric 1,4-DHP (Felodipine drug) were suc-cessfully prepared in high yields using a heterogeneous SBA-15-SO3H catalyst Conclusion: The catalyst, SBA-15-SO3H, exhibited an efficient catalyst activity for the synthesis of 1,4-DHP derivatives in high yields from the aldehyde, β-ketoester, and NH4OAc as a nitrogen source under mild conditions and short reaction time. Bronsted acid sites of this solid catalyst were figured out to play a key role in this transformation. Interestingly, our catalyst is air-stable and can be recycled at least 5 times without losing catalytic activity.

Từ khóa


Tài liệu tham khảo

Triggle D.J.; Calcium channel antagonists: Clinical uses—Past, present and future. Biochem Pharmacol 2007,74(1),1-9

Takenaka T.; Usuda S.; Nomura T.; Maeno H.; Sado T.; Vasodilator profile of a new 1,4-dihydropyridine derivative, 2,6-dimethyl-4-(3-nitrophenyl)-1,4-dihydropyridine-3,5-dicarboxylic acid 3-[2-(N-benzyl-N-methylamino)]-ethyl ester 5-methyl ester hydrochloride (YC-93). Arzneimittelforschung 1976,26(12),2172-2178

Bossert F.; Meyer H.; Wehinger E.; 4-aryldihydropyridines, a new class of highly active calcium antagonists. Angew Chem Int Ed Engl 1981,20(9),762-769

Loev B.; Goodman M.M.; Snader K.M.; Tedeschi R.; Macko E.; Hantzsch-type dihydropyridine hypotensive agents. J Med Chem 1974,17(9),956-965

Tarasenko L.M.; Neporada K.S.; Klusha V.; Stress-protective effect of glutapyrone belonging to a new type of amino acid-containing 1,4-dihydropyridines on periodontal tissues and stomach in rats with different resistance to stress. Bull Exp Biol Med 2002,133(4),369-371

Budriesi R.; Ioan P.; Locatelli A.; Cosconati S.; Leoni A.; Ugenti M.P.; Andreani A.; Di Toro R.; Bedini A.; Spampinato S.; Marinelli L.; Novellino E.; Chiarini A.; Imidazo[2,1-b]thiazole system: A scaffold endowing dihydropyridines with selective cardiodepressant activity. J Med Chem 2008,51(6),1592-1600

Abdul Nasser A.J.; Indumathy S.; Kumar R.S.; Idhayadhulla A.; Kavimani S.; Synthesis and anticonvulsant activity of a new series of 1,4-dihydropyridine derivatives. Indian J Pharm Sci 2010,72(6),719-725

Idhayadhulla A.; Kumar R.S.; Nasser A.J.A.; Kavimani S.; Indhumathy S.; Anti-inflammatory activity of new series of 1,4-dihydropyridine derivatives. Pharm Chem J 2015,49(7),463-466

Gadotti V.M.; Bladen, C.; Zhang, F.X.; Chen, L.; Gündüz, M.G.; Şimşek, R.; Şafak, C.; Zamponi, G.W. Analgesic effect of a broadspectrum dihydropyridine inhibitor of voltage-gated calcium channels. Pflugers Arch 2015,467(12),2485-2493

Viradiya D.; Mirza S.; Shaikh F.; Kakadiya R.; Rathod A.; Jain N.; Rawal R.; Shah A.; Design and synthesis of 1,4-dihydropyridine derivatives as anti-cancer agent. Anticancer Agents Med Chem 2017,17(7),1003-1013

Hantzsch A.; On the synthesis of pyridine-like compounds from acetoacetic ether and aldehyde ammonia. Justus Liebigs Ann Chem 1882,215(1),1-82

Baumann M.; Baxendale I.R.; An overview of the synthetic routes to the best selling drugs containing 6-membered heterocycles. Beilstein J Org Chem 2013,9,2265-2319

De Luca M.; Ioele G.; Ragno G.; 1,4-dihydropyridine antihypertensive drugs: Recent advances in photostabilization strategies. Pharmaceutics 2019,11(2),85-91

Sabitha G.; Reddy G.S.K.K.; Reddy C.S.; Yadav J.S.; A novel TMSI-mediated synthesis of Hantzsch 1,4-dihydropyridines at ambient temperature. Tetrahedron Lett 2003,44(21),4129-4131

Tewari N.; Dwivedi N.; Tripathi R.P.; Tetrabutylammonium hydrogen sulfate catalyzed eco-friendly and efficient synthesis of glycosyl 1,4-dihydropyridines. Tetrahedron Lett 2004,45(49),9011-9014

Sharma G.V.; Reddy K.L.; Lakshmi P.S.; Krishna P.R.; In situ generated ‘HCl’ - An efficient catalyst for solvent-free hantzsch reaction at room temperature: synthesis of new dihydropyridine glycoconjugates. Synthesis 2006,2006(1),55-58

Wang L.M.; Sheng J.; Zhang L.; Han J.W.; Fan Z.Y.; Tian H.; Qian C.T.; Facile Yb(OTf)3 promoted one-pot synthesis of polyhydroquinoline derivatives through Hantzsch reaction. Tetrahedron 2005,61(6),1539-1543

Lee J.H.; Synthesis of Hantsch 1,4-dihydropyridines by fermenting bakers’ yeast. Tetrahedron Lett 2005,46(43),7329-7330

Ko S.; Sastry M.N.V.; Lin C.; Yao C.F.; Molecular iodine-catalyzed one-pot synthesis of 4-substituted-1,4-dihydropyridine derivatives via Hantzsch reaction. Tetrahedron Lett 2005,46(34),5771-5774

Ko S.; Yao C.F.; Ceric Ammonium Nitrate (CAN) catalyzes the one-pot synthesis of polyhydroquinoline via the Hantzsch reaction. Tetrahedron 2006,62(31),7293-7299

Debache A.; Boulcina R.; Belfaitah A.; Rhouati S.; Carboni B.; One-pot synthesis of 1,4-dihydropyridines via a phenylboronic acid catalyzed Hantzsch three-component reaction. Synlett 2008,2008(4),509-512

Cherkupally S.R.; Mekala R.; P-TSA catalyzed facile and efficient synthesis of polyhydroquinoline derivatives through hantzsch multi-component condensation. Chem Pharm Bull (Tokyo) 2008,56(7),1002-1004

Debache A.; Ghalem W.; Boulcina R.; Belfaitah A.; Rhouati S.; Carboni B.; An efficient one-step synthesis of 1,4-dihydropyridines via a triphenylphosphine-catalyzed three-component Hantzsch reaction under mild conditions. Tetrahedron Lett 2009,50(37),5248-5250

Tamaddon F.; Razmi Z.; Jafari A.A.; Synthesis of 3,4-dihydropyrimidin-2(1H)-ones and 1,4-dihydropyridines using ammonium carbonate in water. Tetrahedron Lett 2010,51(8),1187-1189

Wu X.Y.; Facile and green synthesis of 1,4-dihydropyridine derivatives in n -butyl pyridinium tetrafluoroborate. Synth Commun 2012,42(3),454-459

Patil D.R.; Dalal D.S.; One-pot, solvent free synthesis of hantzsch 1, 4-dihydropyridines using β- cyclodextrin as a supramolecular catalyst. Lett Org Chem 2011,8,477-483

Adibi H.; Samimi H.A.; Beygzadeh M.; Iron(III) trifluoroacetate and trifluoromethanesulfonate: Recyclable Lewis acid catalysts for one-pot synthesis of 3,4-dihydropyrimidinones or their sulfur analogues and 1,4-dihydropyridines via solvent-free Biginelli and Hantzsch condensation protocols. Catal Commun 2007,8(12),2119-2124

Wang S.X.; Li Z.Y.; Zhang J.C.; Li J.T.; The solvent-free synthesis of 1,4-dihydropyridines under ultrasound irradiation without catalyst. Ultrason Sonochem 2008,15(5),677-680

Lei M.; Ma L.; Hu L.; Thiamine Hydrochloride–Catalyzed One-Pot Synthesis of 1,4-Dihydropyridine Derivatives Under Solvent-Free Conditions. Synth Commun 2011,41(13),1969-1976

Maheswara M.; Siddaiah V.; Rao Y.K.; Tzeng Y.M.; Sridhar C.; A simple and efficient one-pot synthesis of 1,4-dihydropyridines using heterogeneous catalyst under solvent-free conditions. J Mol Catal Chem 2006,260(1-2),179-180

Paul S.; Gupta R.; Gupta R.; Loupy A.; Covalently anchored sulfonic acid on silica gel as an efficient and reusable heterogeneous catalyst for the one-pot synthesis of hantzsch 1,4-dihydropyridines under solvent-free conditions. Synthesis 2007,2007(18),2835-2838

Zonouz A.M.; Hosseini S.B.; Montmorillonite K10 clay: An efficient catalyst for hantzsch synthesis of 1,4-dihydropyridine derivatives. Synth Commun 2008,38(2),290-296

Rafiee E.; Eavani S.; Rashidzadeh S.; Joshaghani M.; Silica supported 12-tungstophosphoric acid catalysts for synthesis of 1,4-dihydropyridines under solvent-free conditions. Inorg Chim Acta 2009,362(10),3555-3562

Mohammadi B.; Jamkarani S.M.H.; Kamali T.A.; Nasrollahzadeh M.; Mohajeri A.; Sulfonic acid-functionalized silica: a remarkably efficient heterogeneous reusable catalyst for the one-pot synthesis of 1,4-dihydropyridines. Turk J Chem 2010,34,613-619

Jafari-Chermahini M.T.; Tavakol H.; One-pot synthesis of hantzsch 1,4-dihydropyridines by a series of iron oxide nanoparticles: Putative synthetic TRPV6 calcium channel blockers. ChemistrySelect 2021,6(9),2360-2365

Wu K.; Bai Y.; Chen D.; Chen L.; Huang Y.; Bai S.; Li Y.; Green synthesis of 1,4-dihydropyridines using cobalt carbon nanotubes as recyclable catalysts. Environ Chem Lett 2021,19(2),1903-1910

Ghamari Kargar P.; Noorian M.; Chamani E.; Bagherzade G.; Kiani Z.; Synthesis, characterization and cytotoxicity evaluation of a novel magnetic nanocomposite with iron oxide deposited on cellulose nanofibers with nickel (Fe3O4 @NFC@ONSM-Ni). RSC Advances 2021,11(28),17413-17430

Ghosh A.; Kavitha C.S.; Keri R.S.; Fe3O4@cysteine nanocomposite: An efficient and reusable catalyst for the facile, green, one-pot synthesis of 1,4-dihydropyridine via Hantzsch reaction. Chem Data Collect 2021,33

Zhao D.; Feng J.; Huo Q.; Melosh N.; Fredrickson G.H.; Chmelka B.F.; Stucky G.D.; Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 1998,279(5350),548-552

Martínez-Edo G.; Balmori A.; Pontón I.; Martí del Rio A.; Sánchez-García D.; Functionalized ordered mesoporous silicas (MCM-41): Synthesis and applications in catalysis. Catalysts 2018,8(12),617

Singh B.; Na J.; Konarova M.; Wakihara T.; Yamauchi Y.; Salomon C.; Gawande M.B.; Functional mesoporous silica nanomaterials for catalysis and environmental application. Bull Chem Soc Jpn 2020,93(12),1459-1496

Cheng X.; Feng Q.; Ma D.; Chen H.; Zeng X.; Xing F.; Teng J.; Efficient catalytic production of levulinic acid over hydrothermally stable propyl sulfonic acid functionalized SBA-15 in γ-valerolactone-water system. J Environ Chem Eng 2021,9(4)

Horiuchi Y.; Do Van D.; Yonezawa Y.; Saito M.; Dohshi S.; Kim T.H.; Matsuoka M.; Synthesis and bifunctional catalysis of metal nanoparticle-loaded periodic mesoporous organosilicas modified with amino groups. RSC Advances 2015,5(89),72653-72658

Rucins M.; Plotniece A.; Bernotiene E.; Tsai W.B.; Sobolev A.; Recent approaches to chiral 1,4-dihydropyridines and their fused analogues. Catalysts 2020,10(9),1019

Elhamifar D.; Khanmohammadi H.; Elhamifar D.; Nickel containing ionic liquid based ordered nanoporous organosilica: a powerful and recoverable catalyst for synthesis of polyhydroquinolines. RSC Advances 2017,7(86),54789-54796

Siril P.F.; Cross H.E.; Brown D.R.; New polystyrene sulfonic acid resin catalysts with enhanced acidic and catalytic properties. J Mol Catal Chem 2008,279(1),63-68

Ekinci E.K.; Gündüz G.; Oktar N.; Activity comparison of acidic resins in the production of valuable glycerol acetates. Int J Chem React Eng 2016,14(1),309-314

Hantzsch A.; Condensation products of aldehyde ammonia and ketone-like compounds. Ber Dtsch Chem Ges 1881,14(2),1637-1638