Practical Copper-catalyzed Synthesis of Pyrroles under Solvent Free Condition

Vietnam Journal of Catalysis and Adsorption - Tập 11 Số 3 - Trang 54-58 - 2022
Tuan Thanh Dang1, Nguyen Thi Son1, Hien Nguyen2, Cu Hong Hanh2, Nguyen Thi Thanh Chi2, Tran Quang Hung3, Nguyen Thi Thanh Huyen4, Ngo Thi Thuan1, Dang Van Do1
1Faculty of Chemistry, VNU-Hanoi University of Science, 19 Le Thanh Tong, Hanoi, Vietnam
2Institute of Chemistry, Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi, Vietnam
3Faculty of Chemistry, Hanoi National University of Education, 136 Xuan Thuy, Cau Giay, Hanoi, Vietnam
4Chu Van An High School for Gifted Students, Lang Son

Tóm tắt

An efficient and practical method for the synthesis of pyrroles by Cu-catalyzed multicomponent reaction has been described. A range of highly functionalized pyrroles was prepared in good yields under solvent free condition.

Từ khóa

#Cu catalysis #Pyrrole synthesis #N-heterocyclic carbene #Multicomponent reaction #Sustainable process

Tài liệu tham khảo

R. Khajuria, S. Dhamb, K. K. Kapoor, RSC Adv. 6 (2016) 37039- 37066. https://doi.org/10.1039/C6RA03411J

V. Bhardwaj, D. Gumber, V. Abbot, S. Dhiman, P. Sharma, RSC Adv. 5 (2015) 15233- 15266. https://doi.org/10.1039/C4RA15710A

Heterocyclic Chemistry, 5th ed. (Eds.: J. A. Joule, K. Mills) Wiley, UK, 2010.

V. Estevez, M. Villacampa, J. C. Menendez, Chem. Soc. Rev. 43 (2014) 4633 -4657. https://doi.org/10.1039/C3CS60015G

A. V. Gulevich, A. S. Dudnik, N. Chernyak, V. Gevorgyan, Chem. Rev. 113 (2013) 3084-3213. https://doi.org/10.1021/cr300333u

C. Gunanathan, D. Milstein, Science 341 (2013) 1229712. https://10.1126/science.1238303

A. Corma, J. Navas, J. Sabater, Chem. Rev. 118 (2018) 1410 - 1459. https://doi.org/10.1021/acs.chemrev.7b00340

B. G. Reed-Berendt, K. Polidano, L. C. Morrill, Org. Biomol. Chem. 17 (2019) 1595- 1607. https://doi.org/10.1039/C8OB01895B

J. Schranck, A. Tlili, M. Beller, Angew. Chem. Int. Ed. 52 (2013) 7642- 7644. https://doi.org/10.1002/anie.201303015

N. D. Schley, G. E. Dobereiner, R. H. Crabtree, Organometallics 30 (2011) 4174- 4179. https://doi.org/10.1021/om2004755

S. Michlik, R. Kempe, Nat. Chem. 5 (2013) 140- 144. https://doi.org/10.1038/nchem.1547

D. Srimani, Y. Ben-David, D. Milstein, Angew. Chem. Int. Ed. 52 (2013) 4012- 4015. https://doi.org/10.1002/anie.201300574

M. Zhang, X. J. Fang, H. Neumann, M. Beller, J. Am. Chem. Soc. 135 (2013) 11384- 11388. https://doi.org/10.1021/ja406666r

M. Maji, D. Panja, I. Borthakur, S. Kundu, Org. Chem. Front. 8 (2021) 2673- 2709. https://doi.org/10.1039/D0QO01577F

T. T. Dang, B. Ramalingam, S. P. Shan, A. M. Seayad, ACS Catal. 3 (2013) 2536- 2540. https://dx.doi.org/10.1021/cs400799n

N. K. Nguyen, D. H. Nam, B. V. Phuc, V. H. Nguyen, Q. T. Trinh, T. Q. Hung, T. T. Dang, Mol. Catal. 505 (2021) 111462. https://doi.org/10.1016/j.mcat.2021.111462

M. N. Hopkinson, C. Richter, M. Schedler, F. Glorius, Nature 510 (2014) 485- 496. https://doi.org/ 10.1038/nature13384