Hình ảnh học tiền lâm sàng trong mô hình động vật đối với xạ trị

Der Radiologe - Tập 52 - Trang 252-262 - 2012
K. Nikolaou1, C.C. Cyran1, K. Lauber2, M.F. Reiser1, D.-A. Clevert1
1Institut für Klinische Radiologie, Klinikum der Ludwig-Maximilians-Universität, Campus Grosshadern, München, Deutschland
2Klinik und Poliklinik für Strahlentherapie, Klinikum der Ludwig-Maximilians-Universität, München, Deutschland

Tóm tắt

Xạ trị hiện đại hưởng lợi rất nhiều từ việc hình ảnh hóa tiền trị liệu chi tiết và chức năng. Các phương pháp hình ảnh chuẩn thường được sử dụng trước trị liệu như chụp cắt lớp vi tính mặc dù cung cấp các chi tiết hình thái học chất lượng cao, nhưng lại không có thông tin chức năng. Do đó, nhu cầu về các phương pháp hình ảnh chức năng và phân tử đang gia tăng, bổ sung cho hình ảnh học hình thái cung cấp thông tin chức năng sinh học về khối u. Hình ảnh hóa lưu lượng dựa trên chụp cộng hưởng từ tăng cường bằng thuốc cản quang, chụp cắt lớp vi tính hoặc siêu âm, cùng với các phương pháp kết hợp như PET/CT hoặc MRI/PET có tiềm năng để xác định và phân định các phần khối u sống và/hoặc được tưới máu, nhằm tối ưu hóa xạ trị có mục tiêu. Mục tiêu là xác định chính xác và điều trị khối u trong khi giảm thiểu liều và bảo vệ các mô khỏe mạnh xung quanh. Trong sự phát triển của các phương pháp hình ảnh mới để lên kế hoạch cho xạ trị cá nhân hóa, hình ảnh học và nghiên cứu khoa học trong tiền lâm sàng đóng một vai trò đặc biệt quan trọng, vì chỉ trong bối cảnh tiền lâm sàng, tức là trong các mô hình khối u thí nghiệm trên động vật, các khả năng của hình ảnh đa phương thức mới có thể được đánh giá đầy đủ và phát triển hơn nữa. Các phương pháp hình ảnh chức năng mới sẽ đóng một vai trò ngày càng tăng trong việc theo dõi phản ứng điều trị sớm trong xạ trị hoặc trong việc xác định giá trị của các liệu pháp kết hợp mới (ví dụ: chống tiêu hóa mạch cộng với xạ trị).

Từ khóa


Tài liệu tham khảo

Neff T, Kiessling F, Brix G et al (2005) An optimized workflow for the integration of biological information into radiotherapy planning: experiences with T1w DCE-MRI. Phys Med Biol 50:4209–4223 Khoo VS, Joon DL (2006) New developments in MRI for target volume delineation in radiotherapy. Br J Radiol 79(1):2–15 MacManus M, Nestle U, Rosenzweig KE et al (2009) Use of PET and PET/CT for radiation therapy planning: IAEA expert report 2006–2007. Radiother Oncol 91:85–94 Nestle U, Weber W, Hentschel M, Grosu AL (2009) Biological imaging in radiation therapy: role of positron emission tomography. Phys Med Biol 54:R1–R25 Cyran CC, Von Einem J, Paprottka PM et al (2011) Dynamic contrast-enhanced CT imaging biomarkers correlated with immunohistochemistry for monitoring the effects of sorafenib on experimental prostate carcinomas. Invest Radiol (in press) Cyran CC, Fu Y, Raatschen HJ et al (2008) New macromolecular polymeric MRI contrast agents for application in the differentiation of cancer from benign soft tissues. J Magn Reson Imaging 27:581–589 Turetschek K, Floyd E, Helbich T et al (2001) MRI assessment of microvascular characteristics in experimental breast tumors using a new blood pool contrast agent (MS-325) with correlations to histopathology. J Magn Reson Imaging 14:237–242 Koukourakis MI (2001) Tumour angiogenesis and response to radiotherapy. Anticancer Res 21:4285–4300 Cheng Z, De Jesus OP, Namavari M et al (2008) Small-animal PET imaging of human epidermal growth factor receptor type 2 expression with site-specific 18F-labeled protein scaffold molecules. J Nucl Med 49:804–813 Patel D, Kell A, Simard B et al (2011) The cell labeling efficacy, cytotoxicity and relaxivity of copper-activated MRI/PET imaging contrast agents. Biomaterials 32:1167–1176 Cyran CC, Paprottka PM, Von Einem J et al (2010) Perfusion MRI for monitoring sorafenib effect on experimental prostate carcinomas: a validation study. AJR Am J Roentgenol (in press) Bumb A, Regino CA, Perkins MR et al (2010) Preparation and characterization of a magnetic and optical dual-modality molecular probe. Nanotechnology 21:175704 Makowski MR, Wiethoff AJ, Blume U et al (2011) Assessment of atherosclerotic plaque burden with an elastin-specific magnetic resonance contrast agent. Nat Med 17:383–388 Bottomley PA (1987) Spatial localization in NMR spectroscopy in vivo. Ann N Y Acad Sci 508:333–348 Frahm J, Michaelis T, Merboldt KD et al (1989) Localized NMR spectroscopy in vivo. Progress and problems. NMR Biomed 2:188–195 Majos C, Alonso J, Aguilera C et al (2002) Adult primitive neuroectodermal tumor: proton MR spectroscopic findings with possible application for differential diagnosis. Radiology 225:556–566 Stadlbauer A, Gruber S, Nimsky C et al (2006) Preoperative grading of gliomas by using metabolite quantification with high-spatial-resolution proton MR spectroscopic imaging. Radiology 238:958–969 Kuroda K, Suzuki Y, Ishihara Y, Okamoto K (1996) Temperature mapping using water proton chemical shift obtained with 3D-MRSI: feasibility in vivo. Magn Reson Med 35:20–29 Sourbron S (2010) Technical aspects of MR perfusion. Eur J Radiol 76:304–313 Cyran CC, Paprottka PM, Schwarz B et al (2011) Perfusion MRI for monitoring sorafenib effect on experimental prostate carcinomas: a validation study. AJR Am J Roentgenol (in press) Fung SH, Roccatagliata L, Gonzalez RG, Schaefer PW (2011) MR diffusion imaging in ischemic stroke. Neuroimaging Clin North Am 21:345–377 Choi SH, Paeng JC, Sohn CH et al (2011) Correlation of 18F-FDG uptake with apparent diffusion coefficient ratio measured on standard and high b value diffusion mri in head and neck cancer. J Nucl Med 52(7):1056–1062 Inglese M, Bester M (2010) Diffusion imaging in multiple sclerosis: research and clinical implications. NMR Biomed 23:865–872 Bowers CR, Weitekamp DP (1986) Transformation of symmetrization order to nuclear-spin magnetization by chemical reaction and nuclear magnetic resonance. Phys Rev Lett 57:2645–2648 Olsson LE, Chai CM, Axelsson O et al (2006) MR coronary angiography in pigs with intraarterial injections of a hyperpolarized 13C substance. Magn Reson Med 55:731–737 Svensson J, Mansson S, Johansson E et al (2003) Hyperpolarized 13C MR angiography using trueFISP. Magn Reson Med 50:256–262 Golman K, Zandt RI, Lerche M et al (2006) Metabolic imaging by hyperpolarized 13C magnetic resonance imaging for in vivo tumor diagnosis. Cancer Res 66:10855–10860 Mansson S, Johansson E, Magnusson P et al (2006) 13C imaging-a new diagnostic platform. Eur Radiol 16:57–67 Cyran CC, Von Einem JC, Paprottka PM et al (2011) Dynamic contrast-enhanced computed tomography imaging biomarkers correlated with immunohistochemistry for monitoring the effects of sorafenib on experimental prostate carcinomas. Invest Radiol, in press Ophir J, Cespedes I, Ponnekanti H et al (1991) Elastography: a quantitative method for imaging the elasticity of biological tissues. Ultrason Imaging 13:111–134 De Zordo T, Chhem R, Smekal V et al (2010) Real-time sonoelastography: findings in patients with symptomatic achilles tendons and comparison to healthy volunteers. Ultraschall Med 31:394–400 Krouskop TA, Wheeler TM, Kallel F et al (1998) Elastic moduli of breast and prostate tissues under compression. Ultrason Imaging 20:260–274 Itoh A, Ueno E, Tohno E et al (2006) Breast disease: clinical application of US elastography for diagnosis. Radiology 239:341–350 Lorenz A, Ermert H, Sommerfeld HJ et al (2000) Ultrasound elastography of the prostate. A new technique for tumor detection. Ultraschall Med 21:8–15 Van Vledder MG, Boctor EM, Assumpcao LR et al (2010) Intra-operative ultrasound elasticity imaging for monitoring of hepatic tumour thermal ablation. HPB (Oxford) 12:717–723 Zhang D, Zhang S, Wan M, Wang S (2011) A fast tissue stiffness-dependent elastography for HIFU-induced lesions inspection. Ultrasonics 51:857–869 Chenot J, Melodelima D, N’Djin WA et al (2010) Intra-operative ultrasound hand-held strain imaging for the visualization of ablations produced in the liver with a toroidal HIFU transducer: first in vivo results. Phys Med Biol 55:3131–3144 Cui LG, Shao JH, Wang JR et al (2009) Ultrasound elastography of ethanol-induced hepatic lesions: in vitro study. Chin Med Sci J 24:81–85 Hoyt K, Forsberg F, Merritt CR et al (2005) In vivo elastographic investigation of ethanol-induced hepatic lesions. Ultrasound Med Biol 31:607–612 Clevert D-A, Sommer WH, Helck A, Reiser M (2011) Duplex and contrast enhanced ultrasound (CEUS) in evaluation of in-stent restenosis after carotid stenting. Clin Hemorheol Microcirc 48:199–208 Clevert D-A, Minaifar N, Kopp R et al (2009) Imaging of endoleaks after endovascular aneurysm repair (EVAR) with contrast-enhanced ultrasound (CEUS). A pictorial comparison with CTA. Clin Hemorheol Microcirc 41:151–168 Helck A, Sommer WH, Wessely M et al (2011) Benefit of contrast enhanced ultrasound for detection of ischaemic lesions and arterio venous fistulas in renal transplants – a feasibility study. Clin Hemorheol Microcirc 48:149–160 Clevert D-A, Sommer WH, Helck A et al (2011) Improved carotid atherosclerotic plaques imaging with contrast-enhanced ultrasound (CEUS). Clin Hemorheol Microcirc 48:141–148 Clevert D-A, Helck A, Paprottka PM et al (2011) Latest developments in ultrasound of the liver. Radiologe 51:661–670 Zengel P, Schrotzlmair F, Kramer M et al (2011) Management of salivary gland diseases with contrast-enhanced ultrasound. Radiologe 51:490–496 Clevert D-A, Helck A, Paprottka PM et al (2011) Contrast-enhanced ultrasound imaging of the carotid artery. Radiologe 51:483–489 Jung EM, Uller W, Stroszczynski C, Clevert D-A (2011) Contrast-enhanced sonography. Therapy control of radiofrequency ablation and transarterial chemoembolization of hepatocellular carcinoma. Radiologe 51:462–468 Schwarz F, Sommer WH, Reiser M, Clevert D-A (2011) Contrast-enhanced sonography for blunt force abdominal trauma. Radiologe 51:475–482 Greis C (2011) Summary of technical principles of contrast sonography and future perspectives. Radiologe 51:456–461 Greis C (2009) Ultrasound contrast agents as markers of vascularity and microcirculation. Clin Hemorheol Microcirc 43:1–9 Paprottka PM, Zengel P, Ingrisch M et al (2011) Contrast-enhanced ultrasound in animal models. Radiologe 51:506–513 Van Persijn van Meerten EL, Gelderblom H, Bloem JL (2010) RECIST revised: implications for the radiologist. A review article on the modified RECIST guideline. Eur Radiol 20:1456–1467 Topp KA, Zachary JF, O’Brien WD Jr (2001) Quantifying B-mode images of in vivo rat mammary tumors by the frequency dependence of backscatter. J Ultrasound Med 20:605–612 Paprottka PM, Cyran CC, Zengel P et al (2010) Non-invasive contrast enhanced ultrasound for quantitative assessment of tumor microcirculation. Contrast mixed mode examination vs. only contrast enhanced ultrasound examination. Clin Hemorheol Microcirc 46:149–158 Stieger SM, Bloch SH, Foreman O et al (2006) Ultrasound assessment of angiogenesis in a matrigel model in rats. Ultrasound Med Biol 32:673–681 Lassau N, Chami L, Chebil M et al (2011) Dynamic contrast-enhanced ultrasonography (DCE-US) and anti-angiogenic treatments. Discov Med 11:18–24 Luker GD, Luker KE (2008) Optical imaging: current applications and future directions. J Nucl Med 49:1–4 Backer MV, Gaynutdinov TI, Patel V et al (2005) Vascular endothelial growth factor selectively targets boronated dendrimers to tumor vasculature. Mol Cancer Ther 4:1423–1429 Deliolanis N, Lasser T, Hyde D et al (2007) Free-space fluorescence molecular tomography utilizing 360 degrees geometry projections. Opt Lett 32:382–384 Ntziachristos V, Tung CH, Bremer C, Weissleder R (2002) Fluorescence molecular tomography resolves protease activity in vivo. Nat Med 8:757–760 Zavattini G, Vecchi S, Mitchell G et al (2006) A hyperspectral fluorescence system for 3D in vivo optical imaging. Phys Med Biol 51:2029–2043 Ntziachristos V (2011) Clinical translation of optical and optoacoustic imaging. Philos Transact A Math Phys Eng Sci 369:4666–4678 Ntziachristos V, Chance B (2001) Probing physiology and molecular function using optical imaging: applications to breast cancer. Breast Cancer Res 3:41–46 Pichler BJ, Wehrl HF, Judenhofer MS (2008) Latest advances in molecular imaging instrumentation. J Nucl Med 49(Suppl 2):5–23 Kim MJ (2011) Current limitations and potential breakthroughs for the early diagnosis of hepatocellular carcinoma. Gut Liver 5:15–21 Cyran CC, Sennino B, Chaopathomkul B et al (2008) Magnetic resonance imaging assays for dimethyl sulfoxide effect on cancer vasculature. Invest Radiol 43:298–305 Cyran CC, Sennino B, Chaopathomkul B et al (2009) Magnetic resonance imaging for monitoring the effects of thalidomide on experimental human breast cancers. Eur Radiol 19:121–131 Cyran CC, Sennino B, Fu Y et al (2011) Permeability to macromolecular contrast media quantified by dynamic MRI correlates with tumor tissue assays of vascular endothelial growth factor (VEGF). Eur J Radiol [Epub ahead of print] Sipkins DA et al (1998) Detection of tumor angiogenesis in vivo by alphavbeta3-targeted magnetic resonance imaging. Nat Med 4(5):623–626 Winter PM et al (2003) Molecular imaging of angiogenesis in nascent Vx-2 rabbit tumors using a novel alpha(nu)beta3-targeted nanoparticle and 1.5 tesla magnetic resonance imaging. Cancer Res 63(18):5838–5843 Brockenbrough JS et al (2012) Kinetic analysis of 18-F-FLT PET in lung tumors. J Nucl Med [Epub ahead of printj Lopci E et al (2010) Imaging with non-FDG PET tracers: outlook for current clinical applications. lnsights Imaging 1:373–385