Power Density Optimization for an Irreversible Closed Brayton Cycle
Tóm tắt
In this paper, the power density, defined as the ratio of power output to the maximum specific volume in the cycle, is taken as objective for performance optimization of an irreversible closed Brayton cycle coupled to constant-temperature heat reservoirs in the viewpoint of finite time thermodynamics (FTT) or entropy generation minimization (EGM). The analytical formulas about the relations between power density and pressure ratio are derived with the heat resistance losses in the hot- and cold-side heat exchangers and the irreversible compression and expansion losses in the compressor and turbine. The maximum power density optimization is performed by searching the optimum heat conductance distribution corresponding to the optimum power density of the hot- and cold- side heat exchangers for the fixed heat exchanger inventory. The influence of some design parameters on the optimum heat conductance distribution, the maximum power density, and the optimum pressure ratio corresponding to the maximum power density are provided. The power plant design with optimization leads to a higher efficiency and smaller size including the compressor, turbine, and the hot- and cold-side heat exchangers.
Tài liệu tham khảo
I.I. Novikov, The efficiency of atomic power stations, (A review), Atomnaya Energiya 3, 409 (1957).
P. Chambadal, Les Centrales Nuclearies, Armand Cohn, Paris, 1957, pp. 41–58.
F. L. Curzon, B. Ahiborn, Efficiency of a Carnot engine at maximum power output, Am. J. Phys. 43, 22 (1975).
A. Bejan, Entropy Generation through Heat and Fluid Flow, Wiley, New York, 1982.
B. Andresen, Finite-Time Thermodynamics, Physics Laboratory, University of Copenhagen, 1983.
A. Bejan, Entropy Generation Minimization, CRC Press, Boca Raton FL, 1996.
A. Bejan, Entropy generation minimization: The new thermodynamics of finite-size devices and finite time processes, J. Appl. Phys. 79, 1191 (1996).
L. Chen, C. Wu C. F. Sun, Finite time thermodynamic optimization or entropy generation minimization of energy systems, J. Non-Equilib. Thermodyn. 24, 327 (1999).
R. S. Berry, V. A. Kazakov, S. Sieniutycz, Z. Szwast, A. M. Tsirlin, Thermodynamic Optimization of Finite Time Processes, Wiley, Chichester, 1999.
A. Bejan, Shape and Structure from Engineering to Nature, Cambridge University Press, Cambridge, UK, 2000.
A. Bejan, Advanced Engineering Thermodynamics, Wiley, New York, 1988, pp. 411—414.
O. M. Ibrahim, S. A. Klein, J. W. Mitchell, Optimum heat power cycles for specified boundary conditions, Trans. ASME J. Engng. Gas Turbine Pow. 11, 514 (1991).
L. Chen, F. Sun, C. Wu, Performance analysis of an irreversible Brayton heat engine, J. Institu. Energy 70, 2 (1997).
M. Feidt, Optimization of Brayton cycle engine in contact with fluid thermal capacities, Rev. Gen. Therm. 35, 622 (1996).
C. Wa, L. Chen, F. Sun, Performance of a regenerative Brayton heat engine, Energy, The Int. J. 21, 71 (1996).
L. Chen, F. Sun, C. Wu, R. L. Kiang, Theoretical analysis of the performance of a regenerated closed Brayton cycle with internal irreversibilities, Energy Corners, Mgmt. 18, 871 (1997).
L. Chen, N. Ni, G. Cheng, F. Sun, FTT performance of a closed regenerated Brayton cycle coupled to variable-temperature heat reservoirs, Proc. Int. Conf. Marine Engng. 3.7.1–3.7.7, Nov. 4–8, 1996, Shanghai, China.
L. Chen, N. Ni, G. Cheng, F. Sun, C. Wu, Performance analysis for a real closed regenerated Brayton cycle via methods of finite time thermodynamics, J. of Ambient Energy 20, 95 (1999).
L. Chen, F. Sun, C. Wu, Effect of heat resistance on the performance of closed gas turbine regenerative cycles, J. Power and Energy Systems 19 141 (1999).
[20]_J. M. M. Roco, S. Veleasco, A. Medina, A. Calvo Hernaudes, Optimum performance of a regenerative Brayton thermal cycle, J. Appl. Phys. 82, 2735 (1997).
C. Y. Cheng, C. K. Chen, Power optimization of an irreversible Brayton heat engine, Energy Sources 19, 461 (1997).
C. Y. Cheng, C. K. Chen, Efficiency optimizations of an irreversible Brayton heat Engine, Trans. ASME, J. Energy Res. Tech. 12, 143 (1998).
C. Y. Cheng, C. K. Chen, Ecological optimization of an endoreversible Brayton cycle, Energy Convers. Mgmt. 39, 33 (1998).
C. Y. Cheng, C. K. Chen, Ecological optimization of an irreversible Brayton heat engine, J. Phys. D: Appl. Phys. 32, 350 (1999).
C. Y. Cheng, C. K. Chen, Maximum power of an endoreversible intercooled Brayton cycle, Int. J. Energy Res. 24, 485 (2000).
D. A. Blank, Analysis of a combined law Power-optimized open finite interactive heat source, J. Phys. D: Appl. Phys. 32, 769 (1999).
D. A. Blank, C. Wu C, A combined power optimized open Joule-Brayton heat-engine cycle with a fixed-finite thermal reservoir, Int. J. Pow. & Energy Sys. 20, 1 (2000).
V. Radcenco, J. V. C. Vergas, A. Bejan, Thermodynamic optimization of a gas turbine power plant with pressure drop irreversibilities, Trans. ASME J. Energy Res. Tech. 12, 233 (1998).
B. Saliin, A. Kodal, H. Yavus, Efficiency of a Joule-Brayton engine at maximum power density, J. Phys. D: Appl. Phys. 28, 1309 (1995).
B. Sahin, A. Kodal, T. Yilmaz, H. Yavuz, Maximum power density analysis of au irreversible Joule-Brayton engine, J. Phys. D: Appl, Phys. 29, 1162 (1996).
A. Medina, J. M. M. Roco, C. Hernandez, Regenerative gas turbines at maximum power density conditions, J. Phys, D: Appl, Phys. 29, 2802 (1996).
B. Sahin, A. Kodal, S. S. Kaya, A Comparative performance analysis of irreversible regenerative reheating Joule-Brayton engines under maximum power density and maximum power conditions, J. Phys. D: Appl. Phys. 17, 2125 (1998).
L. B. Erbay, A. Sisman, H. Yavnz, Analysis of Ericsson cycle at maximum power density conditions, ECOS'96, June 25—27, Stockholm, 1996, pp. 175–178.
L. Chen, J. Lin, F. Sun, C. Wu, Efficiency of an Atkinson engine at maximum power density. Energy Comers. Mgmt. 9, 337 (1998).
B. Sahin, A. Kodal, H. Yavuz, Maximum power density analysis of an endoreversible Carnot engine, Energy, The Int. J. 21, 1219 (1996).
A. Kodal, B. Saisin, T. Yilmaz, A Comparative performance analysis of irreversible Carnot heat engines under maximum power density and maximum power conditions, Energy Convers. Mgmt. 42, 235 (2000).
A. Kodal, Maximum power density analysis for irreversible combined Carnot cycles, J. Phys. D: Appl. Phys., 32, 2958 (1999).
H. Cohen, G. F. C. Rogers, H. I. H. Saravanaunuttoo, Gas Turbine Theory, London, 1985.
R. W. Haywood, Analysis of Engineering Cycles, 4th ed. Pergamon Press, Oxford, 1991.
W. A. Woods, P. J. Bevan, D. I. Bevan, Output and efficiency of the closed gas turbine cycle. Proc. Instn. Mech. Engrs., Part A, Journal of Power and Energy 20, 59 (1991).
W. A. Woods, On the role of the harmonic mean isentropic exponent in the analysis of the closed-cycle gas turbine, Proc. Instn. Mech. Engrs., Part A, Journal of Power and Energy 20, 287 (1991).
G. B. Wilhium, L. A. Tom, Mission design drivers for closed Brayton Cycle space power conversion configuration, Int. Gas Turbine and Aeroengine Congerss and Exposition, 1991, 1—6.
T.H. Frost, B. Agnew, A. Anderson, Optimizations for Brayton-Joule gas turbine cycles. Proc. Instn Mech. Engrs., Part A, A Journal of Power and Energy 20, 283 (1992).
J. Michael, Closed cycle Gas Turbine Nuclear power plant for submarine propulsion, Naval Engineers Journal 11, 35 (1995).
J. H. Horlock, W. A. Woods, Determination of the optimum performance of gas turbines, Proc. Instn. Mech. Engrs., Part C, Journal of Mechanics Science 21, 243 (2000).
A. Bejan, Theory of heat transfer-irreversible power plants, Int. J. Heat Mass Transfer 31, 1211 (1988).
L. Chen, F. Sun, The optimal performance of an irreversible Carnot engine, Sci. Tech. Bull. 11 128 (1995) (in Chinese).
L. Chen, F. Sun, C. Wu, A Generalized model of real heat engines and its performance, J. Institute Energy 69 214 (1996).
L. Chen, F. Sun, C. Wu, Effect of heat transfer law on the performance of a generalized irreversible Carnot engine, J. Phys. D: App. Phys. 32, 99 (1999).