Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Xử lý hoa văn điện phân từ bột trộn AISI 316 cho ứng dụng sinh học: một nghiên cứu so sánh sâu về các loại môi trường cách điện và vật liệu điện cực
Journal of the Brazilian Society of Mechanical Sciences and Engineering - Tập 45 - Trang 1-21 - 2023
Tóm tắt
Vật liệu sinh học rất được ưa chuộng trong các ứng dụng tích hợp xương, đặc biệt cho các loại cấy ghép chỉnh hình và nha khoa, nhờ vào những đặc điểm độc đáo của chúng. Tuy nhiên, các cấy ghép bằng vật liệu thép không gỉ AISI 316L không thể đáp ứng nhu cầu của ứng dụng nêu trên do độ bám dính kém giữa xương và các mô tự nhiên của môi trường. Do đó, việc thực hiện xử lý bề mặt là cần thiết trước khi áp dụng vào bất kỳ tế bào sống nào. Sửa đổi bề mặt là một phương pháp có thể cải thiện hình thái bề mặt của vật liệu và biến nó thành vật liệu thân thiện với sinh học. Có nhiều phương pháp có thể sửa đổi bề mặt; trong số đó, xử lý hoa văn điện phân (EDT) là một phương pháp mới được phát triển. EDT là bước tiếp theo của gia công điện phân và cung cấp kết quả độ nhám bề mặt xuất sắc khi có nhu cầu cấp bách về việc nghiên cứu các gờ bề mặt của vật liệu. Tuy nhiên, vai trò của các phụ gia trong quá trình EDT vật liệu SS 316L chưa được kiểm tra. Do đó, ý định chính của công việc này là áp dụng khái niệm EDT trộn bột để đánh giá độ nhám bề mặt (SR) đối với bốn biến đầu vào, bao gồm loại bột (alumina, than chì, silicon carbide), loại điện cực (nhôm, đồng, đồng thau), loại môi trường cách điện (dầu kerosene, dầu biến thế, dầu cải) và tỷ lệ thời gian xung (0.5, 1.0, 1.5). Thiết kế phân tích Taguchi L9 đã được áp dụng để phân tích tác động của các đầu vào máy đến phản ứng đầu ra. Kết quả cho thấy dầu kerosene tốt hơn các môi trường cách điện khác trong việc cung cấp giá trị SR thấp nhất. Tại giá trị 0.5 của tỷ lệ thời gian xung, độ hoàn thiện bề mặt xuất sắc đạt được khi đồng thau được chọn làm vật liệu điện cực. Các kết quả đã được chứng minh qua các bằng chứng thu thập được bằng kính hiển vi quang học, kính hiển vi điện tử quét và đo độ nhám bề mặt. Cuối cùng, cài đặt tối ưu đã được gợi ý và xác nhận qua các thử nghiệm xác nhận.
Từ khóa
#Vật liệu sinh học #thép không gỉ AISI 316L #xử lý bề mặt #xử lý hoa văn điện phân #độ nhám bề mặt #phụ gia #điện cực.Tài liệu tham khảo
Raju P, Sarcar MMM, Satyanarayana B (2014) Optimization of wire electric discharge machining parameters for surface roughness on 316 L stainless steel using full factorial experimental design. Proc Mater Sci 5:1670–1676. https://doi.org/10.1016/j.mspro.2014.07.355
Prakash C, Kansal HK, Pabla B et al (2016) Electric discharge machining—a potential choice for surface modification of metallic implants for orthopedic applications: a review. Proc Inst Mech Eng Part B J Eng Manuf 230:331–353. https://doi.org/10.1177/0954405415579113
Hudecki A, Kiryczyński G, Łos MJ (2019) Biomaterials, definition, overview. In: Stem cells and biomaterials for regenerative medicine. Elsevier, pp 85–98
Mavrogenis AF, Dimitriou R, Parvizi J, Babis GC (2009) Biology of implant osseointegration. J Musculoskelet Neuronal Interact 9:61–71
Jin W, Chu PK (2019) Orthopedic implants. In: Encyclopedia of biomedical engineering. Elsevier, pp 425–439
Gittens RA, McLachlan T, Olivares-Navarrete R et al (2011) The effects of combined micron-/submicron-scale surface roughness and nanoscale features on cell proliferation and differentiation. Biomaterials 32:3395–3403. https://doi.org/10.1016/j.biomaterials.2011.01.029
Liu YF, Mu JS, Xu XY, Yang SZ (2007) Microstructure and dry-sliding wear properties of TiC-reinforced composite coating prepared by plasma-transferred arc weld-surfacing process. Mater Sci Eng A 458:366–370. https://doi.org/10.1016/j.msea.2006.12.086
Nolan D, Huang SW, Leskovsek V, Braun S (2006) Sliding wear of titanium nitride thin films deposited on Ti–6Al–4V alloy by PVD and plasma nitriding processes. Surf Coat Technol 200:5698–5705. https://doi.org/10.1016/j.surfcoat.2005.08.110
Yildiz F, Yetim AF, Alsaran A, Çelik A (2008) Plasma nitriding behavior of Ti6Al4V orthopedic alloy. Surf Coat Technol 202:2471–2476. https://doi.org/10.1016/j.surfcoat.2007.08.004
Minagar S, Berndt CC, Wang J et al (2012) A review of the application of anodization for the fabrication of nanotubes on metal implant surfaces. Acta Biomater 8:2875–2888. https://doi.org/10.1016/j.actbio.2012.04.005
Jithin S, Shetye SS, Rodrigues JJ et al (2018) Analysis of electrical discharge texturing using different electrode materials. Adv Mater Process Technol 4:466–479. https://doi.org/10.1080/2374068X.2018.1457350
Kim S-K, Kim M-K, Jeon E-C (1998) A study on the characteristics of electro-discharge texturing for temper mill work roll. KSME Int J 12:153–159. https://doi.org/10.1007/BF02946543
Ramasawmy H, Blunt L (2004) Effect of EDM process parameters on 3D surface topography. J Mater Process Technol 148:155–164. https://doi.org/10.1016/S0924-0136(03)00652-6
Govindan P, Joshi SS (2012) Analysis of micro-cracks on machined surfaces in dry electrical discharge machining. J Manuf Process 14:277–288. https://doi.org/10.1016/j.jmapro.2012.05.003
Aspinwall DK, Wise MLH, Stout KJ et al (1992) Electrical discharge texturing. Int J Mach Tools Manuf 32:183–193. https://doi.org/10.1016/0890-6955(92)90077-T
Evin E, Tomáš M, Kmec J (2020) Optimization of electro-discharge texturing parameters for steel sheets’ finishing rollers. Materials (Basel) 13:1223. https://doi.org/10.3390/ma13051223
Singh M, Jain VK, Ramkumar J (2021) Micro-texturing on flat and cylindrical surfaces using electric discharge micromachining. J Micromanuf 4:127–137. https://doi.org/10.1177/2516598420980404
Koshy P, Tovey J (2011) Performance of electrical discharge textured cutting tools. CIRP Ann 60:153–156. https://doi.org/10.1016/j.cirp.2011.03.104
Singh B, Sasi R, Kanmani Subbu S, Muralidharan B (2019) Electric discharge texturing of HSS cutting tool and its performance in dry machining of aerospace alloy. J Braz Soc Mech Sci Eng 41:152. https://doi.org/10.1007/s40430-019-1654-6
Abu Qudeiri J, Saleh A, Ziout A et al (2019) Advanced electric discharge machining of stainless steels: assessment of the state of the art, gaps and future prospect. Materials (Basel) 12:907. https://doi.org/10.3390/ma12060907
Dehghani D, Yahya A, Khamis NH (2020) Dynamic behaviour of EDM system through mathematical model. J Phys Conf Ser 1529:052001. https://doi.org/10.1088/1742-6596/1529/5/052001
Das S, Paul S, Doloi B (2019) An experimental and computational study on the feasibility of bio-dielectrics for sustainable electrical discharge machining. J Manuf Process 41:284–296. https://doi.org/10.1016/j.jmapro.2019.04.005
Prakash V, Kumar P, Singh P et al (2019) Micro-electrical discharge machining of difficult-to-machine materials: a review. Proc Inst Mech Eng Part B J Eng Manuf 233:339–370. https://doi.org/10.1177/0954405417718591
Rouniyar AK, Shandilya P (2022) Study of surface crack density and microhardness of aluminium 6061 alloy machined by EDM with mixed powder and assisted magnetic field. J Micromanuf 5:156–163. https://doi.org/10.1177/25165984211016445
Gudipudi S, Nagamuthu S, Subbian KS, Chilakalapalli SPR (2022) A comprehensive investigation on machining of composites by EDM for microfeatures and surface integrity. J Micromanuf 5:5–20. https://doi.org/10.1177/25165984211063308
Alidoosti A, Ghafari-Nazari A, Moztarzadeh F et al (2013) Electrical discharge machining characteristics of nickel–titanium shape memory alloy based on full factorial design. J Intell Mater Syst Struct 24:1546–1556. https://doi.org/10.1177/1045389X13476147
Abu Qudeiri JE, Mourad A-HI, Ziout A et al (2018) Electric discharge machining of titanium and its alloys: review. Int J Adv Manuf Technol 96:1319–1339. https://doi.org/10.1007/s00170-018-1574-0
Muthuramalingam T, Mohan B (2015) A review on influence of electrical process parameters in EDM process. Arch Civ Mech Eng 15:87–94. https://doi.org/10.1016/j.acme.2014.02.009
Bains PS, Mahajan R, Sidhu SS, Kaur S (2019) Experimental investigation of abrasive assisted hybrid EDM of Ti–6Al–4V. J Micromanuf 2:123–132. https://doi.org/10.1177/2516598419833498
Joshi AY, Joshi AY (2019) A systematic review on powder mixed electrical discharge machining. Heliyon 5:e02963. https://doi.org/10.1016/j.heliyon.2019.e02963
Sadagopan P, Mouliprasanth B (2017) Investigation on the influence of different types of dielectrics in electrical discharge machining. Int J Adv Manuf Technol 92:277–291. https://doi.org/10.1007/s00170-017-0039-1
Gohil V, Puri Y (2017) Turning by electrical discharge machining: a review. Proc Inst Mech Eng Part B J Eng Manuf 231:195–208. https://doi.org/10.1177/0954405415590560
Çogun C, Özerkan B, Karaçay T (2006) An experimental investigation on the effect of powder mixed dielectric on machining performance in electric discharge machining. Proc Inst Mech Eng Part B J Eng Manuf 220:1035–1050. https://doi.org/10.1243/09544054JEM320
Gugulothu B, Krishna Mohana Rao G, Hanuantha Rao D et al (2021) Experimental results on EDM of Ti–6Al–4V in drinking water with graphite powder concentration. Mater Today Proc 46:234–242. https://doi.org/10.1016/j.matpr.2020.07.616
Kumar V, Kumar A, Kumar S, Singh NK (2018) Comparative study of powder mixed EDM and conventional EDM using response surface methodology. Mater Today Proc 5:18089–18094. https://doi.org/10.1016/j.matpr.2018.06.143
Rashid A, Jahan MP (2021) Microfabrication by electrical discharge machining-based hybrid processes. In: Micro electro-fabrication. Elsevier, pp 33–62
Kumar A, Kumar S, Mandal A, Rai Dixit A (2018) Investigation of powder mixed EDM process parameters for machining Inconel alloy using response surface methodology. Mater Today Proc 5:6183–6188. https://doi.org/10.1016/j.matpr.2017.12.225
Prihandana GS, Sriani T, Prihandana K et al (2011) Study on the effect of nano and micro MoS2 powder in micro-electrical discharge machining. Adv Mater Res 264–265:1450–1455. https://doi.org/10.4028/www.scientific.net/AMR.264-265.1450
Al-Amin M, Abdul Rani AM, Abdu Aliyu AA et al (2020) Powder mixed-EDM for potential biomedical applications: a critical review. Mater Manuf Process 35:1789–1811. https://doi.org/10.1080/10426914.2020.1779939
Ramesh S, Jenarthanan M (2021) Optimizing the powder mixed EDM process of nickel based super alloy. Proc Inst Mech Eng Part E J Process Mech Eng 235:1092–1103. https://doi.org/10.1177/09544089211002782
Mughal MP, Farooq MU, Mumtaz J et al (2021) Surface modification for osseointegration of Ti6Al4V ELI using powder mixed sinking EDM. J Mech Behav Biomed Mater 113:104145. https://doi.org/10.1016/j.jmbbm.2020.104145
Srinivas Viswanth V, Ramanujam R, Rajyalakshmi G (2018) A review of research scope on sustainable and eco-friendly electrical discharge machining (E-EDM). Mater Today Proc 5:12525–12533. https://doi.org/10.1016/j.matpr.2018.02.234
Al-Amin M, Abdul-Rani AM, Rana M et al (2022) Evaluation of modified 316L surface properties through HAp suspended EDM process for biomedical application. Surf Interfaces 28:101600. https://doi.org/10.1016/j.surfin.2021.101600
Khandizod R, Varghese V, Mujumdar S (2022) Electric discharge assisted surface texturing of stainless steel 304. Proc CIRP 108:670–674. https://doi.org/10.1016/j.procir.2022.03.104
Imran M, M A S, B L S, et al (2022) An experimental study for surface roughness effect on SS 316L by copper electrode in biomedical fabrication machined using EDM. Int J Mech Eng 9:11–17. https://doi.org/10.14445/23488360/IJME-V9I4P102
Farooq MU, Bhatti HA, Asad M et al (2022) Surface generation on titanium alloy through powder-mixed electric discharge machining with the focus on bioimplant applications. Int J Adv Manuf Technol 122:1395–1411. https://doi.org/10.1007/s00170-022-09927-1
Kumar A, Sijina KP, Rajanikant GK, Kuriachen B (2022) Experimental investigation into the effects of electric discharge surface modification process parameters on the biocompatibility of Ti6Al4V. Biomed Eng Adv 4:100063. https://doi.org/10.1016/j.bea.2022.100063
Harcuba P, Bačáková L, Stráský J et al (2012) Surface treatment by electric discharge machining of Ti–6Al–4V alloy for potential application in orthopaedics. J Mech Behav Biomed Mater 7:96–105. https://doi.org/10.1016/j.jmbbm.2011.07.001
Ndaliman MB, Khan AA, Ali MY (2013) Influence of dielectric fluids on surface properties of electrical discharge machined titanium alloy. Proc Inst Mech Eng Part B J Eng Manuf 227:1310–1316. https://doi.org/10.1177/0954405413488592
Kansal HK, Singh S, Kumar P (2005) Parametric optimization of powder mixed electrical discharge machining by response surface methodology. J Mater Process Technol 169:427–436. https://doi.org/10.1016/j.jmatprotec.2005.03.028
Kansal HK, Singh S, Kumar P (2008) Numerical simulation of powder mixed electric discharge machining (PMEDM) using finite element method. Math Comput Model 47:1217–1237. https://doi.org/10.1016/j.mcm.2007.05.016
Kansal HK, Singh S, Kumar P (2007) Technology and research developments in powder mixed electric discharge machining (PMEDM). J Mater Process Technol 184:32–41. https://doi.org/10.1016/j.jmatprotec.2006.10.046
Ekmekci B, Ersöz Y (2012) How suspended particles affect surface morphology in powder mixed electrical discharge machining (PMEDM). Metall Mater Trans B 43:1138–1148. https://doi.org/10.1007/s11663-012-9700-0
Chow H-M, Yang L-D, Lin C-T, Chen Y-F (2008) The use of SiC powder in water as dielectric for micro-slit EDM machining. J Mater Process Technol 195:160–170. https://doi.org/10.1016/j.jmatprotec.2007.04.130
Haque R, Sekh M, Kibria G, Haidar S (2021) Comparative study of parametric effects on the performance of simple and powder mixed EDM using aluminium and graphite powder on Inconel X750 alloy. Mater Today Proc 46:8366–8373. https://doi.org/10.1016/j.matpr.2021.03.419
Kumar Sahu S, Jadam T, Datta S (2021) Study of machinability assessment of nickel based alloy using electro-discharge machining with transformer oil as dielectric. Mater Today Proc 38:2205–2212. https://doi.org/10.1016/j.matpr.2020.06.262
Tan PC, Yeo SH (2011) Investigation of recast layers generated by a powder-mixed dielectric micro electrical discharge machining process. Proc Inst Mech Eng Part B J Eng Manuf 225:1051–1062. https://doi.org/10.1177/2041297510393645
Zain ZM, Ndaliman MB, Khan AA, Ali MY (2014) Improving micro-hardness of stainless steel through powder-mixed electrical discharge machining. Proc Inst Mech Eng Part C J Mech Eng Sci 228:3374–3380. https://doi.org/10.1177/0954406214530872
Arshad R, Mehmood S, Shah M et al (2019) Effect of distilled water and kerosene as dielectrics on machining rate and surface morphology of Al-6061 during electric discharge machining. Adv Sci Technol Res J 13:162–169. https://doi.org/10.12913/22998624/111846
Sahu AK, Sahu SK, Datta S, Mahapatra SS (2019) Machinability appraisement of inconel 825 during electro-discharge machining. In: Proceedings of the 2019 international conference on management science and industrial engineering. ACM, New York, pp 240–244
Shukry H, Aghdeab HLA (2018) The effect of different dielectrics on material removal rate, surface roughness and white layer thickness in EDM process. Int J Eng Technol 7:4455–4461
Saberi MR, Ghandehariun A (2023) Experimental investigation of effective parameters on productivity improvement of the EDM process for corrosion-resistant metals. Int J Adv Manuf Technol 124:1763–1774. https://doi.org/10.1007/s00170-022-10559-8
Abbas AT, Abubakr M, Hassan MA et al (2020) An adaptive design for cost, quality and productivity-oriented sustainable machining of stainless steel 316. J Mater Res Technol 9:14568–14581. https://doi.org/10.1016/j.jmrt.2020.10.056
AlHazaa A, Haneklaus N (2020) Diffusion bonding and transient liquid phase (TLP) bonding of type 304 and 316 austenitic stainless steel—a review of similar and dissimilar material joints. Metals (Basel) 10:613. https://doi.org/10.3390/met10050613
Ahmed N, Ishfaq K, Moiduddin K et al (2019) Machinability of titanium alloy through electric discharge machining. Mater Manuf Process 34:93–102. https://doi.org/10.1080/10426914.2018.1532092
Ishfaq K, Sana M, Mahmood MA et al (2023) Evaluating surface quality of inconel 617 by employing deep cryogenically treated electrodes in surfactant-added dielectrics of transformer oil. Metals (Basel) 13:1092. https://doi.org/10.3390/met13061092
Sidhu AS (2021) Surface texturing of non-toxic, biocompatible titanium alloys via electro-discharge. Rep Mech Eng 2:51–56. https://doi.org/10.31181/rme200102051s
Guu YH, Hou MT-K (2007) Effect of machining parameters on surface textures in EDM of Fe–Mn–Al alloy. Mater Sci Eng A 466:61–67. https://doi.org/10.1016/j.msea.2007.02.035
Vagaská B, Bačáková L, Filová E, Balík K (2010) Osteogenic cells on bio-inspired materials for bone tissue engineering. Physiol Res. https://doi.org/10.33549/physiolres.931776
Vandrovcová M, Bačáková L (2011) Adhesion, growth and differentiation of osteoblasts on surface-modified materials developed for bone implants. Physiol Res. https://doi.org/10.33549/physiolres.932045
Rosa AL, Beloti MM (2003) Effect of cpTi surface roughness on human bone marrow cell attachment, proliferation, and differentiation. Braz Dent J 14:16–21. https://doi.org/10.1590/S0103-64402003000100003
Webster TJ, Ergun C, Doremus RH et al (2000) Specific proteins mediate enhanced osteoblast adhesion on nanophase ceramics. J Biomed Mater Res 51:475–483. https://doi.org/10.1002/1097-4636(20000905)51:3%3c475::AID-JBM23%3e3.0.CO;2-9
Bhattacharyya B, Doloi B (2020) Machining processes utilizing thermal energy. In: Modern machining technology. Elsevier, pp 161–363
Jilani ST, Pandey PC (1984) Experimetnal investigations into the performance of water as dielectric in EDM. Int J Mach Tool Des Res 24:31–43. https://doi.org/10.1016/0020-7357(84)90044-1
Talla G, Gangopadhyay S, Biswas CK (2017) Influence of graphite powder mixed EDM on the surface integrity characteristics of Inconel 625. Part Sci Technol 35:219–226. https://doi.org/10.1080/02726351.2016.1150371
Shahbazi Dastjerdi M, Mokhtarian A, Saraeian P (2020) The effect of alumina powder in dielectric on electrical discharge machining parameters of aluminum composite A413-Al2O3 by the Taguchi method, the signal-to-noise analysis and the total normalized quality loss. Int J Mech Mater Eng 15:5. https://doi.org/10.1186/s40712-020-00117-z