Potentiometric scanning electrochemical microscopy for monitoring the pH distribution during the self-healing of passive titanium dioxide layer on titanium dental root implant exposed to physiological buffered (PBS) medium

Electrochemistry Communications - Tập 95 - Trang 1-4 - 2018
Abdelilah Asserghine1, Dániel Filotás1, Bálint Németh2, Lívia Nagy1,3, Géza Nagy1,3
1Department of General and Physical Chemistry, Faculty of Sciences, University of Pécs, 7624, Ifjúság u. 6, Pécs, Hungary
2BL Dent Kft., 1027 Budapest, Kapás utca 26-44, Hungary
3János Szentágothai Research Center, University of Pécs, 7624, Ifjúság u. 20, Pécs, Hungary

Tài liệu tham khảo

Geetha, 2009, Ti based biomaterials, the ultimate choice for orthopedic implants—a review, Prog. Mater. Sci., 54, 397, 10.1016/j.pmatsci.2008.06.004 Niinomi, 2012, Development of new metallic alloys for biomedical applications, Acta Biomater., 8, 3888, 10.1016/j.actbio.2012.06.037 Biesiekierski, 2012, A new look at biomedical Ti based shape memory alloys, Acta Biomater., 8, 1661, 10.1016/j.actbio.2012.01.018 Li, 2014, New developments of Ti-based alloys for biomedical applications, Materials, 7, 1709, 10.3390/ma7031709 Case, 1994, Widespread dissemination of metal debris from implants, J. Bone Joint Surg., 76B, 701, 10.1302/0301-620X.76B5.8083255 Aziz-Kerrzo, 2001, Electrochemical studies on the stability and corrosion resistance of titanium based implant materials, Biomaterials, 22, 1531, 10.1016/S0142-9612(00)00309-4 Solar, 1979, Corrosion resistance of titanium surgical implant alloys: a review, 259 Schutz, 1987, vol. 13, 669 Manam, 2017, Study of corrosion in biocompatible metals for implants: a review, J. Alloys Compd., 701, 698, 10.1016/j.jallcom.2017.01.196 Ichinose, 2003, The study of metal ion release and cytotoxicity in Co–Cr–Mo and Ti–Al–V alloy in total knee prosthesis - scanning electron microscopic observation, J. Mater. Sci. Mater. Med., 14, 79, 10.1023/A:1021557605458 Sarmiento-González, 2008, High resolution ICP-MS determination of Ti, V, Cr, Co, Ni, and Mo in human blood and urine of patients implanted with a hip or knee prosthesis, Anal. Bioanal. Chem., 391, 2583, 10.1007/s00216-008-2188-4 Nuevo-Ordónez, 2011, Titanium release in serum of patients with different bone fixation implants and its interaction with serum biomolecules at physiological levels, Anal. Bioanal. Chem., 401, 2747, 10.1007/s00216-011-5232-8 Asserghine, 2017, Scanning electrochemical microscopy investigation of the rate of formation of a passivating TiO2 layer on a Ti G4 dental implant, Electrochem. Commun., 83, 33, 10.1016/j.elecom.2017.08.018 Csóka, 2003, Investigation of concentration profiles inside operating biocatalytic sensors with scanning electrochemical microscopy (SECM), Biosens. Bioelectron., 18, 141, 10.1016/S0956-5663(02)00167-7 Izquierdo, 2011, Spatially resolved measurement of electrochemical activity and pH distributions in corrosion processes by scanning electrochemical microscopy using antimony microelectrode tips, Electrochim. Acta, 56, 8846, 10.1016/j.electacta.2011.07.076 Filotás, 2017, Short-term influence of interfering ion activity change on ion-selective micropipette electrode potential; another factor that can affect the time needed for imaging in potentiometric SECM, Electrochem. Commun., 77, 62, 10.1016/j.elecom.2017.02.010 Ibrahim, 2002, The electrochemical behavior and characterization of the anodic oxide film formed on titanium in NaOH solutions, J. Solid State Electrochem., 6, 341, 10.1007/s100080100229 Fovet, 2001, Influence of pH and fluoride concentration on titanium passivating layer: stability of titanium dioxide, Talanta, 53, 1053, 10.1016/S0039-9140(00)00592-0 Hanga, 2010, Corrosion behavior of NiTi alloy in fetal bovine serum, Electrochim. Acta, 55, 5551, 10.1016/j.electacta.2010.04.061 González, 1999, Study of the corrosion behavior of titanium and some of its alloys for biomedical and dental implant applications, J. Electroanal. Chem., 471, 109, 10.1016/S0022-0728(99)00260-0 Wang, 2009, Effects of Hf content and immersion time on electrochemical behavior of biomedical Ti–22Nb–xHf alloys in 0.9% NaCl solution, Mater. Corros., 60, 330, 10.1002/maco.200805120 Alves, 2009, In situ impedance spectroscopy study of the electrochemical corrosion of Ti and Ti–6Al–4V in simulated body fluid at 25 °C and 37 °C, Corros. Sci., 51, 2473, 10.1016/j.corsci.2009.06.035 Lu, 2018, Electrochemical corrosion characteristics and biocompatibility of nanostructure titanium for implants, Appl. Surf. Sci., 434, 63, 10.1016/j.apsusc.2017.10.168 Alvesa, 2017, Corrosion mechanisms in titanium oxide-based films produced by anodic treatment, Electrochim. Acta, 234, 16, 10.1016/j.electacta.2017.03.011 Mazzarolo, 2012, Anodic growth of titanium oxide: electrochemical behaviour and morphological evolution, Electrochim. Acta, 75, 288, 10.1016/j.electacta.2012.04.114 Navarro Laboulais, 2017, Electrochemical characterization and passivation behaviour of new beta-titanium alloys (Ti35Nb10Ta-xFe), Electrochim. Acta, 227, 410, 10.1016/j.electacta.2016.12.125 Ribeiro, 2013, Are new TiNbZr alloys potential substitutes of the Ti6Al4V alloy for dental applications? An electrochemical corrosion study, Biomed. Mater., 8, 10.1088/1748-6041/8/6/065005