Potentials of game engines for wind power digital twin development: an investigation of the Unreal Engine
Tóm tắt
Từ khóa
Tài liệu tham khảo
Abdallah A, Primas M, Turcin I, Traussnigg U (2020) The Potential of Game Development Platforms for Digital Twins and Virtual Labs: Case Study of an Energy Analytics and Solution Lab. CAMPUS 02, University of Applied Sciences, Graz, 8010, Austria, annote = Export Date 3 January 2022 Methods & Technologies Unity3D Purpose Integration of DT and lab environment Application domain? Contributions? Other abstract to vague to be further analysed. p. 117–21
Andryushkevich SK, Kovalyov SP, Nefedov E (2019) Composition and application of power system digital twins based on ontological modeling. 2019 IEEE 17th International Conference on Industrial Informatics (INDIN). p. 1536–42
Bradac Z, Marcon P, Zezulka F, Arm J, Benesl T (2019) Digital Twin and AAS in the Industry 4.0 Framework. IOP Conference Series: Materials Science and Engineering
Chang-won L: Hyundai Motor works with Unity to build digital-twin of factory supported by metaverse platform. https://www.ajudaily.com/view/20220107083928529 (2022). Accessed 13/07 2022
Christensen K, Ma Z, Værbak M, Demazeau Y, Jørgensen BN (2019) Agent-based decision making for adoption of smart energy solutions. 2019 IEEE Sciences and Humanities International Research Conference (SHIRCON). p. 1–4
Commission E: photovoltaic geographical information system. https://re.jrc.ec.europa.eu/pvg_tools/en/tools.html Accessed 05/07 2022
Engine U: Digital twins—For architecture, real estate, and the built environment. https://www.unrealengine.com/en-US/digital-twins Accessed 05/07 2022
Eyre JM, Dodd TJ, Freeman C, Lanyon-Hogg R, Lockwood AJ, Scott RW, et al (2018) Demonstration of an Industrial Framework for an Implementation of a Process Digital Twin. ASMEInternational Mechanical Engineering Congress and Exposition (IMECE2018): Amer Soc Mechanical Engineers
Fahim M, Sharma V, Cao TV, Canberk B, Duong TQ (2022) Machine learning-based digital twin for predictive modeling in wind turbines. IEEE Access 10:14184–14194. https://doi.org/10.1109/ACCESS.2022.3147602
Gamma E, Helm R, Johnson R, Vlissides J (1994) Design patterns: elements of reusable object-oriented software
Glaessgen EH, Stargel DS (2012) The digital twin paradigm for future NASA and U.S. Air force vehicles. Collection of Technical Papers—AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference. https://doi.org/10.2514/6.2012-1818
Gppert A, Grahn L, Rachner J, Grunert D, Hort S, Schmitt RH (2021) Pipeline for ontology-based modeling and automated deployment of digital twins for planning and control of manufacturing systems. J Intell Manuf. https://doi.org/10.1007/s10845-021-01860-6
Grieves M, Vickers J (2017) Digital twin: mitigating unpredictable, undesirable emergent behavior in complex systems. In: Kahlen F-J, Flumerfelt S, Alves A (eds) Transdisciplinary perspectives on complex systems: new findings and approaches. Springer International Publishing, Cham, pp 85–113
Howard DA, Ma Z, Jørgensen BN (2021) Digital twin framework for energy efficient greenhouse industry 4.0. Springer International Publishing, Cham, pp 293–297
Howard DA, Ma Z, Veje C, Clausen A, Aaslyng JM, Jørgensen BN (2021) Greenhouse industry 4.0—digital twin technology for commercial greenhouses. Energy Inf 4(2):37. https://doi.org/10.1186/s42162-021-00161-9
Introducing JSON. www.json.org Accessed 05/07 2022
Kong LCW, Harper S, Mitchell D, Blanche J, Lim T, Flynn D (2020) Interactive digital twins framework for asset management through internet. 2020 IEEE Global Conference on Artificial Intelligence and Internet of Things (GCAIoT). p. 1–7
Larsen BL (2022) EU-Parlamentet vedtager strategi for havvind. https://www.danskenergi.dk/nyheder/eu-parlamentet-vedtager-strategi-havvind (2022). Accessed 02-07-2022
Lee D, Lee SH, Masoud N, Krishnan MS, Li VC (2021) Integrated digital twin and blockchain framework to support accountable information sharing in construction projects. Autom Constr 127:9. https://doi.org/10.1016/j.autcon.2021.103688
Leskovsk (2020) Proposal of digital twin platform based on 3D rendering and IIoT principles using virtual augmented reality. 2020 Cybernetics & Informatics (K&I). p. 1–8
Ma Z, Billanes JD, Jørgensen BN (2017) A business ecosystem driven market analysis: the bright green building market potential. 2017 IEEE Technology & Engineering Management Conference (TEMSCON). p. 79–85
Ma Z, Værbak M, Rasmussen RK, Jøergensen BN (2019a) Distributed energy resource adoption for campus microgrid. 2019a IEEE 17th International Conference on Industrial Informatics (INDIN). p. 1065–70
Ma Z, Broe M, Fischer A, Sϕrensen TB, Frederiksen MV, Jϕergensen BN (2019b) Ecosystem thinking: creating microgrid solutions for reliable power supply in India’s power system. 2019b 1st Global Power, Energy and Communication Conference (GPECOM). p. 392–7
Ma Z, Korsgaard J, Jørgensen BN (2020) Optimization of greenhouse production process: an investigation of energy efficiency potentials. 2019 6th International Conference on Dependable Systems and Their Applications (DSA). p. 365–70
Malakuti S, Juhlin P, Doppelhamer J, Schmitt J, Goldschmidt T, Ciepal A (2021) An architecture and information meta-model for back-end data access via digital twins. 2021 26th IEEE International Conference on Emerging Technologies and Factory Automation (ETFA). p. 1–8
Moghadam FK, Nejad AR (2022) Online condition monitoring of floating wind turbines drivetrain by means of digital twin. Mech Syst Signal Process 162:108087. https://doi.org/10.1016/j.ymssp.2021.108087
Moghadam FK, Rebouças GFdS, Nejad AR (2021) Digital twin modeling for predictive maintenance of gearboxes in floating offshore wind turbine drivetrains. Forsch Ingenieurwes 85(2):273–286. https://doi.org/10.1007/s10010-021-00468-9
Mostafa F, Tao LQ, Yu WJ (2021) An effective architecture of digital twin system to support human decision making and AI-driven autonomy. Concurr Comput-Pract Exp 33(19):15. https://doi.org/10.1002/cpe.6111
Negri E, Berardi S, Fumagalli L, Macchi M (2020) MES-integrated digital twin frameworks. J Manuf Syst 56:58–71. https://doi.org/10.1016/j.jmsy.2020.05.007
Negrin DAM, Cleophas L, Brand MVD (2021) Using Ptolemy II as a Framework for Virtual Entity Integration and Orchestration in Digital Twins. 2021 ACM/IEEE International Conference on Model Driven Engineering Languages and Systems Companion (MODELS-C). p. 233–6
Örs E, Schmidt R, Mighani M, Shalaby M (2020) A conceptual framework for AI-based operational digital twin in chemical process engineering. 2020 IEEE International Conference on Engineering, Technology and Innovation (ICE/ITMC). p. 1–8
Ospina-Bohórquez A, López-Rebollo J, Muñoz-Sánchez P, González-Aguilera D (2022) A digital twin for monitoring the construction of a wind farm. Eng Proc. https://doi.org/10.3390/engproc2022017003
Pereira JG, Ellman A (2020) From CAD to physics-based digital twin: framework for real-time simulation of virtual prototypes. Proceedings of the Design Society: DESIGN Conference. p. 335–44
Perforce: What Is Keeping Automotive Software Developers Up at Night? https://www.perforce.com/resources/sca/2022-state-automotive-software-development-report#what-is-keeping-automotive-software-developers-up-at-night Accessed 12/07 2022
Redeker M, Weskamp JN, Rssl B, Pethig F (2021) Towards a digital twin platform for Industrie 4.0. 2021 4th IEEE International Conference on Industrial Cyber-Physical Systems (ICPS). p. 39–46
Rolle RP, Martucci VO, Godoy EP (2021) Modular framework for digital twins: development and performance analysis. J Control Autom Elect Syst 32(6):1485–1497. https://doi.org/10.1007/s40313-021-00830-w
Shahsavari S, Immonen E, Rabah M, Haghbayan MH, Plosila J (2021) MCX—an open-source framework for digital twins. Proceedings—European Council for Modelling and Simulation, ECMS. p. 119–24
Sharotry A, Jimenez JA, Wierschem D, Mediavilla FAM, Koldenhoven RM, Valles D, et al (2020) A digital twin framework for real-time analysis and feedback of repetitive work in the manual material handling industry. Winter Simulation Conference: IEEE; p. 2637–48
Steindl G, Stagl M, Kasper L, Kastner W, Hofmann R (2020) Generic digital twin architecture for industrial energy systems. Appl Sci-Basel 10:20. https://doi.org/10.3390/app10248903
Studios N: MQTT Utilities plugin for Unreal Engine. https://github.com/NinevaStudios/mqtt-utilities-unreal (2022). Accessed 15/07 2022
Talkhestani BA, Jung T, Lindemann B, Sahlab N, Jazdi N, Schloegl W et al (2019) An architecture of an intelligent digital twin in a cyber-physical production system. At-Automatisierungstechnik 67(9):762–782. https://doi.org/10.1515/auto-2019-0039
Touma JS (1977) Dependence of the wind profile power law on stability for various locations. J Air Pollut Control Assoc 27(9):863–866. https://doi.org/10.1080/00022470.1977.10470503
Traore MK (2021) Unifying Digital Twin Framework: Simulation-Based Proof-of-Concept. In: Control M, Logist IFACTCIa, editors. 17th IFAC Symposium on Information Control Problems in Manufacturing (INCOM): Elsevier; p. 886–93
Unity: Digital Twin. https://unity.com/solutions/digital-twin Accessed 05/07 2022
Værbak M, Ma Z, Christensen K, Demazeau Y, Jørgensen BN (2019) Agent-based modelling of demand-side flexibility adoption in reservoir pumping. 2019 IEEE Sciences and Humanities International Research Conference (SHIRCON). p. 1–4
wind-turbine-models: Enercon E-126 7.580. https://en.wind-turbine-models.com/turbines/14-enercon-e-126-7.580 Accessed 12/07 2022
wind-turbine-models: Vestas V164-8.0. https://en.wind-turbine-models.com/turbines/318-vestas-v164-8.0 Accessed 12/07 2022
Worden K, Cross EJ, Barthorpe RJ, Wagg DJ, Gardner P (2020) On digital twins, mirrors, and virtualizations: frameworks for model verification and validation. ASCE-ASME J Risk Uncert Eng Syst Part B Mech Eng. https://doi.org/10.1115/1.4046740
51World: 51World. https://www.51vr.com.au/ Accessed 12/707 2022
Yun S, Park JH, Kim WT (2017) IEEE. Data-centric Middleware based Digital Twin Platform for Dependable Cyber-Physical Systems. 9th International Conference on Ubiquitous and Future Networks (ICUFN): Ieee; p. 922–6
Zhang H, Xi Y, Wang S, Wang K, Liu Q, Wei L, et al (2021) Hybrid data-physics based digital twin modeling framework for the power system of bobsleigh and tobogganing venue for Beijing winter Olympics. 2021 6th International Conference on Power and Renewable Energy (ICPRE). p. 865–71