Potential to monitor plant stress using remote sensing tools
Tài liệu tham khảo
Broge, 2000, Comparing prediction power and stability of broadband and hyperspectral vegetation indices for estimation of green leaf area index and canopy chlorophyll density, Remote Sens. Environ., 76, 156, 10.1016/S0034-4257(00)00197-8
Bunke, 1984, Bootstrap and cross-validation estimates of the prediction error for linear regression models, Ann. Statistics, 12, 1400, 10.1214/aos/1176346800
Cheng, 2008, A fixed-threshold approach to generate high-resolution vegetation maps for IKONOS imagery, Sensors, 8, 4308, 10.3390/s8074308
Cho, 2006, A new technique for extracting the red edge position from hyperspectral data: the linear extrapolation method, Remote Sens. Environ., 101, 181, 10.1016/j.rse.2005.12.011
Cho, 2013, Assessing the effects of subtropical forest fragmentation on leaf nitrogen distribution using remote sensing data, Landsc. Ecol., 28, 1470, 10.1007/s10980-013-9908-7
Clifton, 1994, The fine-scale mapping of grassland protein densities, Grass Forage Sci., 49, 1, 10.1111/j.1365-2494.1994.tb01970.x
Corbett, 2008, 1
DWA, 2008
Dye, 2008
Dzikiti, 2013, Water relations and the effects of clearing invasive Prosopis trees on groundwater in an arid environment in the Northern Cape, South Africa, J. Arid. Environ., 90, 103, 10.1016/j.jaridenv.2012.10.015
Dzikiti, 2013, Comparison of water use by alien invasive pine forests growing in riparian and non-riparian zones, For. Ecol. Manag. J., 293, 92, 10.1016/j.foreco.2013.01.003
Dzikiti, 2011, Seasonal variation in canopy reflectance and its application to determine the water status and water use by citrus trees in the Western Cape, South Africa, Agric. For. Meteorol., 151, 1035, 10.1016/j.agrformet.2011.03.007
Dzikiti, 2007, Whole-tree level water balance and its implications on stomatal oscillations of young orange trees under natural climatic conditions, J. Exp. Bot., 58, 1893, 10.1093/jxb/erm023
Efron, 1997, Improvements on cross-validation: the .632+ Bootstrap method, J. Am. Statist. Assoc., 92, 548
Eitel, 2008, Combined spectral index to improve ground-based estimates of nitrogen status in dryland wheat, Agronomy J., 100, 1694, 10.2134/agronj2007.0362
Eitel, 2011, Broadband, red-edge information from satellites improves early stress detection in a new Mexico conifer woodland, Remote Sens. Environ., 115, 3640, 10.1016/j.rse.2011.09.002
Everson, 2011, Water use of grasslands, agroforestry systems and indigenous forests, Water SA, 37, 781, 10.4314/wsa.v37i5.15
Fuentes, 2011, Mapping Canadian boreal forest vegetation using pigments and water absorption features derived from the AVIRIS sensor, J. Geophys. Res., 106, 33565, 10.1029/2001JD900110
Gong, 2002, Analysis of in situ hyperspectral data for nutrient estimation of giant sequoia, Int. J. Remote Sens., 23, 1827, 10.1080/01431160110075622
Hansen, 2003, Reflectance measurement of canopy biomass and nitrogen status in wheat crops using normalized difference vegetation indices and partial least squares regression, Remote Sens. Environ., 86, 542, 10.1016/S0034-4257(03)00131-7
Huete, 1988, A soil-adjusted vegetation index (SAVI), Remote Sens. Environ., 25, 295, 10.1016/0034-4257(88)90106-X
Huete, 1997, A comparison of vegetation indices global set of TM images for EOS-MODIS, Remote Sens. Environ., 59, 440, 10.1016/S0034-4257(96)00112-5
Huete, 2002, Overview of the radiometric and biophysical performance of the MODIS vegetation indices, Remote Sens. Environ., 83, 195, 10.1016/S0034-4257(02)00096-2
Horneck, 1998, Determination of total nitrogen in plant tissue, 75
Horler, 1983, The red edge of plant leaf reflectance, Int. J. Remote Sens., 4, 273, 10.1080/01431168308948546
Hultine, 2011, Ecohydrological consequences of non-native riparian vegetation in the southwestern United States: a review from an ecophysiological perspective, Water Resour. Res., 7, W07542
Jones, 2004, Irrigation scheduling: advantages and pitfalls of plant -based methods, J. Exp. Bot., 55, 2427, 10.1093/jxb/erh213
Jordan, 1969, Derivation of leaf area index from quality of light on the floor, Ecology, 50, 663, 10.2307/1936256
Knox, 2010, Nitrogen prediction in grasses: effect of bandwidth and plant material state on absorption feature selection, Int. J. Remote Sens., 31, 691, 10.1080/01431160902895480
Mgojo, 2012
Mucina, 2006
Mutanga, 2004, Narrow band vegetation indices overcome the saturation problem in biomass estimation, Int. J. Remote Sens., 25, 3999, 10.1080/01431160310001654923
Mutanga, 2007, Red edge shift and biochemical content in grass canopies, ISPRS J. Photogrammetry Remote Sens., 62, 34, 10.1016/j.isprsjprs.2007.02.001
Orbeholster, 2010, First report on the colony-forming freshwater ciliate Ophrydium versatile in an African river, Water SA, 36, 315
Peñuelas, 1995, Reflectance assessment of mite effects on apple trees, Int. J. Remote Sens., 16, 2727, 10.1080/01431169508954588
Plummer, 1988, Exploring the relationships between leaf nitrogen content, biomass and the near-infrared/red reflectance ratio, Int. J. Remote Sens., 9, 177, 10.1080/01431168808954845
Ramoelo, 2012, Regional estimation of savanna grass nitrogen using the red-edge band of the spaceborne RapidEye sensor, Int. J. Appl. Earth Observation Geoinformation, 19, 151, 10.1016/j.jag.2012.05.009
Ramoelo, 2012, Estimating grass nutrients and biomass as an indicator of rangeland (forage) quality and quantity using remote sensing in Savanna ecosystems, 8
Ramoelo, 2013, Non-linear partial least square regression increases the estimation accuracy of grass nitrogen and phosphorus using in situ hyperspectral and environmental data, ISPRS J. Photogramm. Remote Sens., 82, 27, 10.1016/j.isprsjprs.2013.04.012
Ramoelo, 2011, Water-removed spectra increase the retrieval accuracy when estimating savanna grass nitrogen and phosphorus concentrations, ISPRS J. Photogramm. Remote Sens., 66, 408, 10.1016/j.isprsjprs.2011.01.008
Rapideye, 2010
Richter, 2011
Rodriguez-Perez, 2007, Evaluation of hyperspectral reflectance indices to detect grapevine water status in vineyard, Am. J. Enology Vitic., 58, 302, 10.5344/ajev.2007.58.3.302
Rouse, 1974, 371
Schleicher, 2001, Evaluation and refinement of the nitrogen reflectance index (NRI) for site-specific fertilizer management
Smith, 1995, Forecasting wheat yield in a Mediterranean type of environment from the NOAA satellite, Aust. J. Agric. Res., 46, 113, 10.1071/AR9950113
Staden, 2005, Major plant communities of the Marakele National Park, Koedoe, 48, 59
Steppe, 2004
Steppe, 2006, A mathematical model linking tree sap flow dynamics to daily stem diameter fluctuations and radial stem growth, Tree Physiol., 26, 257, 10.1093/treephys/26.3.257
Stuckens, 2011, Physiological interpretation of a hyperspectral time series in orchards, Agric. For. Meteorol., 151, 1002, 10.1016/j.agrformet.2011.03.006
Tucker, 1977, Asymptotic nature of grass canopy spectral reflectance, Appl. Opt., 16, 57, 10.1364/AO.16.001151
Ullah, 2012, Estimation of grassland biomass and nitrogen using MERIS data, Int. J. Appl. Earth Observ. Geoinf., 19, 196, 10.1016/j.jag.2012.05.008
Vermuelen, 2011
Wang, 2004, The prediction of grain protein in winter wheat (Triticum aestivum) using plant pigment ratio (PPR), Field Crops Res., 90, 311, 10.1016/j.fcr.2004.04.004
Wenjiang, 2004, Inversion of foliar biochemical parameters at various physiological stages and grain quality indicators of winter wheat with canopy reflectance, Int. J. Remote Sens., 25, 2409, 10.1080/01431160310001618095
Yoder, 1995, Predicting nitrogen and chlorophyll content and concentrations from reflectance spectra (400-2500 nm) at leaf and canopy scales, Remote Sens. Environ., 53, 199, 10.1016/0034-4257(95)00135-N
Zarco-Tejada, 2005, Assessing vineyard condition with hyperspectral indices: leaf and canopy reflectance simulation in a row-strucured discontinuous canopy, Remote Sens. Environ., 99, 271, 10.1016/j.rse.2005.09.002
Zhu, 2012, Climate change impacts on water availability and use in the Limpopo river basin, Water, 4, 63, 10.3390/w4010063