Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tiềm năng của việc cải thiện hiệu suất của bộ thu nhiệt nước mặt phẳng bằng nanofluid đơn giản và hybrid dưới khí hậu Bắc Phi điển hình (Tunisia)
Tóm tắt
Nghiên cứu này nhằm định lượng sự cải thiện hiệu suất lâu dài của hệ thống bình nước nóng năng lượng mặt trời bằng cách sử dụng cả nanofluid đơn giản và hybrid. Để đạt được mục tiêu này, các mô phỏng hệ thống tạm thời của bộ thu năng lượng mặt trời tấm phẳng đã được tiến hành và thảo luận bằng cách sử dụng các hạt nano dựa trên titan oxit, magie oxit và oxit đồng/ống nano carbon đa tường. Các điều kiện khí hậu Tunisia với nhu cầu hộ gia đình điển hình đã được xem xét, và các nghiên cứu đã được thiết lập dựa trên lượng năng lượng, tỷ lệ năng lượng mặt trời và giảm phát thải CO2 gây hại. Kết quả cho thấy đã có sự tăng trưởng trong hiệu suất của bộ thu năng lượng khi sử dụng các nanofluid đã xem xét. Cụ thể, việc sử dụng 0.2v% và 0.6v% TiO2 phân tán đồng đều trong nước làm giảm năng lượng bổ sung xuống tới 47.6% và 60.9%, lần lượt, so với trường hợp tham khảo sử dụng nước. Bộ thu năng lượng mặt trời tấm phẳng có sản lượng hàng năm là 1294 kWh cho nhu cầu 1998 kWh, tương đương với tỷ lệ bao phủ hàng năm khoảng 65%. Thêm vào đó, cũng đã chỉ ra rằng khi sử dụng MgO với MWCNT thay cho các hạt nano dựa trên MgO, tỷ lệ năng lượng mặt trời đã tăng thêm 5.14%. Việc sử dụng 0.6% thể tích các hạt nano TiO2 trong nước đã giảm thiểu phát thải CO2 độc hại xuống tới 0.829 tấn mỗi năm.
Từ khóa
#nanofluid #năng lượng mặt trời #bộ thu nhiệt #khí hậu Bắc Phi #phát thải CO2Tài liệu tham khảo
Alshuraiaan B, Izadi M, Sheremet MA (2022) Numerical study on charging performance of multi-enclosed thermal storage: multiple versus integrated thermal storage. Case Stud Ther Eng 33:101–954
Alshuraiaan B, Shahrestani AB, Izadi M (2023) Numerical studys on passive paramerters of a fluid-solid interaction problem derived by natural convection in a circular enclosure. Alex Eng J 63:415–426
Arıkan E, Abbasoğlu S, Gazi M (2018) Experimental performance analysis of flat plate solar collectors using different nanofluids. Sustainability 10:17–94
Bellos E, Tzivanidis C, Tsimpoukis D (2018) Enhancing the performance of parabolic trough collectors using nanofluids and turbulators. Renew Sustain Energy Rev 91:358–375
Bhowmik H, Amin R (2017) Efficiency improvement of flat plate solar collector using reflector. Energy Rep 3:119–123
Bouhal T, Agrouaz Y, Allouhi A, Kousksou T, Jamil A, El Rhafiki T, Zeraouli Y (2017) Impact of load profile and collector technology on the fractional savings of solar domestic water heaters under various climatic conditions. Int J Hydrogen Energy 42:13245–13258
Bozorg MV, Doranehgard MH, Hong K, Xiong Q (2020) CFD study of heat transfer and fluid flow in a parabolic trough solar receiver with internal annular porous structure and synthetic oil Al2O3 nanofluid. Renewable Energy 145:2598–2614
Carbon Footprint Country specific electricity grid greenhouse gas emission factors. Carbon Footprint: Hampshire, UK (2019)
Choudhary S, Sachdeva A, Kumar P (2020) Influence of stable zinc oxide nanofluid on thermal characteristics of flat plate solar collector. Renewable Energy 152:1160–1170
Delouei AA, Sajjadi H, Mohebbi R, Izadi M (2019) Experimental study on inlet turbulent flow under ultrasonic vibration: pressure drop and heat transfer enhancement. Ultrason Sonochem 51:151–159
Elsaid K, Olabi A, Wilberforce T, Abdelkareem MA, Sayed ET (2020) Environmental impacts of nanofluids: a review. Sci Total Environ 763:144–202
Eltaweel M, Abdel-Rehim AA, Attia AAA (2020) Energetic and exergetic analysis of a heat pipe evacuated tube solar collector using MWCNT/water nanofluid. Case Stud Ther Eng 22:100–743
Farajzadeh E, Movahed S, Hosseini R (2018) Experimental and numerical investigations on the effect of Al2O3/TiO2H2O nanofluids on thermal efficiency of the flat plate solar collector. Renewable Energy 118:122–130
Fischer S, Heidemann W, Müller-Steinhagen H, Perers B, Bergquist P, Hellström B (2004) Collector test method under quasi-dynamic conditions according to the European Standard EN 12975–2. Sol Energy 76:117–123
Forgan BW (1996) A new method for calibrating reference and field pyranometers. J Atmos Oceanic Tech 13:638–645
Gad MS, Said M (2020) Effect of different nanofluids on performance analysis of flat plate solar collector. Journal of Dispersion Science and Technology 1–12
Gangadevi R, Raja S, Imam SA (2013) Efficiency analysis of flat plate solar collector using Al2O3-water nanofluid. Indian Streams Res J 2:1–4
Garcia-Rodriguez L, Palmero-Marreroa AI, Gbmez-Camachob C (2002) Comparison of solar thermal technologies for applications in seawater desalination. Desalination 142:135–142
Ghaderian J, CheSidik NA (2017) An experimental investigation on the effect of Al2O3/distilled water nanofluid on the energy efficiency of evacuated tube solar collector. Int J Heat Mass Transf 108:972–987
Gopalsamy V, Karunakaran R (2020) Performance evaluation of nanofluid on parabolic trough solar collector. Therm Sci 24:853–864
Hafez AZ, Yousef AM, Harag NM (2018) Solar tracking systems: technologies and trackers drive types – a review. Renew Sustain Energy Rev 91:754–782
Hamdan M, Sarsour M (2018) Effect of nanoparticles on the performance of solar flat plate collectors. J Ecol Eng 19:1–7
Hazami M, Naili N, Attar I, Farhat A (2013) Solar water heating systems feasibility for domestic requests in Tunisia: thermal potential and economic analysis. Energy Convers Manage 76:599–608
Henein SM, Abdel-Rehim AA (2022) The performance response of a heat pipe evacuated tube solar collector using MgO/MWCNT hybrid nanofluid as a working fluid. Case Stud Ther Eng 33:101–957
Hernández CV, González JS, Fernández-Blanco R (2019) New method to assess the long-term role of wind energy generation in reduction of CO2 emissions-case study of the European Union. J Clean Prod 207:1099–1111
Hussain HA, Jawad Q, Sultan KF (2015) Experimental analysis on thermal efficiency of evacuated tube solar collector by using nanofluids. Intl J Sustain Green Energy 4:19–28
Hussein OA, Habib K, Muhsan AS, Saidur R, Alawi OA, Ibrahim TK (2020) Thermal performance enhancement of a flat plate solar collector using hybrid nanofluid. Sol Energy 204:208–222
Huu-Quan D, Rostami AM, Rad MS, Izadi M, Hajjar A, Xiong Q (2021) 3D numerical investigation of turbulent forced convection in a double-pipe heat exchanger with flat inner pipe. Appl Therm Eng 182:106–116
Ismail AE, Nor NHM, Ali MFM, Ahmad R, Masood I, Tobi ALM, Abdul Ghafir MF, Muhammad M, Wahab MS, Zain BAM, Siswanto WA (2013) The efficiency enhancement on the direct flow evacuated tube solar collector using water-based titanium oxide nanofluids. Appl Mech Mater 465–466:308–315
Izadi M, Assad MEH (2021) Use of nanofluids in solar energy systems. Design and Performance Optimization of Renewable Energy Systems Academic Press: 221–250
Izadi M, Bastani B, Sheremet MA (2020a) Numerical simulation of thermogravitational energy transport of a hybrid nanoliquid within a porous triangular chamber using the two-phase mixture approach. Adv Powder Technol 31:2493–2504
Izadi M, Behzadmehr A, Shahmardan MM (2013a) Effects of discrete source-sink arrangements on mixed convection in a square cavity filled by nanofluid. Korean J Chem Eng 31:12–19
Izadi M, Ghalambaz M, Mehryan SAM (2020b) Location impact of a pair of magnetic sources on melting of a magneto-ferro phase change substance. Chin J Phys 65:377–388
Izadi M, Hajjar A, Alshehri HM, Sheremet M, Galal AM (2022a) Charging process of a partially heated trapezoidal thermal energy storage filled by nano-enhanced PCM using controlable uniform magnetic field. Int Commun Heat Mass Transfer 138:106–349
Izadi M, Shahmardan MM, Behzadmehr A (2013b) Richardson number ratio effect on laminar mixed convection of a nanofluid flow in an annulus. Int J Comput Methods Eng Sci Mech 14:304–316
Izadi M, Shahmardan MM, Behzadmehr A, Rashidi AM, Amrollahi A (2015) Modeling of effective thermal conductivity and viscosity of carbon structured nanofluid. Challenges Nano Micro Scale Sci Technol 3:1–13
Izadi M, Shahmardan MM, Rashidi AM (2013c) Study on thermal and hydrodynamic indexes of a nanofluid flow in a micro heat sink. Challenges Nano Micro Scale Sci Technol 1:53–63
Izadi M, Sheremet M, Alshehri HM, Ambreen T, Doranehgard MH (2022b) Numerical study on charging process inside a grid-structure thermal storage. J Energy Stor 45:103–522
Jouybari HJ, Saedodin S, Zamzamian A, Nimvari ME, Wongwises S (2017) Effects of porous material and nanoparticles on the thermal performance of a flat plate solar collector: an experimental study. Renewable Energy 114:1407–1418
Kasaeian A, Daviran S, Azarian RD, Rashidi A (2015) Performance evaluation and nanofluid using capability study of a solar parabolic trough collector. Energy Convers Manage 89:368–375
Kiliç F, Menlik T, Sözen A (2018) Effect of titanium dioxide/water nanofluid use on thermal performance of the flat plate solar collector. Sol Energy 164:101–108
Kim Y, Han GY, Seo T (2008) An evaluation on thermal performance of CPC solar collector. Int Commun Heat Mass Transfer 35:446–457
Lanjwani HB, Chandio MS, Anwar MI, Shehzad SA, Izadi M (2021) Dual solutions of time-dependent magnetohydrodynamic stagnation point boundary layer micropolar nanofluid flow over shrinking/stretching surface. Appl Math Mech 42:1013–1028
Li Y, Liang X, Song W, Li T, Wang D, Liu Y (2022) Optimization and thermal performance of U-type evacuated tube solar collector filled with phase change material. Energy Rep 8:6126–6138
Mahbubul IM, Khan MMA, Ibrahim NI, Ali AM, Al-Sulaiman FA, Saidur R (2018) Carbon nanotube nanofluid in enhancing the efficiency of evacuated tube solar collector. Renewable Energy 121:36–44
Mehryan SAM, Ghalambaz M, Feeoj RK, Hajjar A, Izadi M (2020a) Free convection in a trapezoidal enclosure divided by a flexible partition. Int J Heat Mass Transf 149:119–186
Mehryan SAM, Tahmasebi A, Izadi M, Ghalambaz M (2020b) Melting behaviour of phase change materials in the presence of a non-uniform magnetic-field due to two variable magnetic sources. Int J Heat Mass Transf 149:119–184
Meibodi SS, Kianifar A, Niazmand H, Mahian O, Wongwises S (2015) Experimental investigation on the thermal efficiency and performance characteristics of a flat plate solar collector using SiO2/ EG–water nanofluids. Int Commun Heat Mass Transfer 65:71–75
Messaouda A, Hamdi M, Hazami A, Guizani AA (2020) Analysis of an integrated collector storage system with vacuum glazing and compound parabolic concentrator. Appl Therm Eng 169:114–958
Mondragon R, Sanchez D, Cabello R, Lopis R, Julia JE (2019) Flat plate solar collector performance using alumina nanofluids: experimental characterization and efficiency tests. PLoS ONE 2:1–14
Olia H, Torabi M, Bahiraei M, Ahmadi MH, Goodarzi M, Safaei MR (2019) Application of nanofluids in thermal performance enhancement of parabolic trough solar collector: state-of-the-art. Appl Sci 9:1–463
Rajput NS, Shukla DD, Rajput D, Sharm SK (2019) Performance analysis of flat plate solar collector using Al2O3/distilled water nanofluid: an experimental investigation. Mater Today Proc 10:52–59
Ramesh GK, Shehzad SA, Izadi M (2020) Thermal transport of hybrid liquid over thin needle with heat sink/source and Darcy-Forchheimer porous medium aspects. Arab J Sci Eng 45:9569–9578
Riffat SB, Zhao X, Doherty PS (2005) Developing a theoretical model to investigate thermal performance of a thin membrane heat-pipe solar collector. Appl Therm Eng 25:899–915
Sabiha MA, Saidur R, Hassani S, Said Z, Mekhilef S (2015) Energy performance of an evacuated tube solar collector using single walled carbon nanotubes nanofluids. Energy Convers Manage 105:1377–1388
Said Z, Sabiha MA, Saidur R, Hepbasli A, Rahim NA, Mekhilef S, Ward TA (2015) Performance enhancement of a flat plate solar collector using titanium dioxide nanofluid and polyethylene glycol dispersant. J Clean Prod 92:343–353
Sajjadi H, Delouei AA, Mohebbi R, Izadi M, Succi S (2021) Natural convection heat transfer in a porous cavity with sinusoidal temperature distribution using Cu/water nanofluid: double MRT lattice Boltzmann method. Commun Comput Phys 29:292–318
Sghari M, Hammami S (2016) Energy, pollution, and economic development in Tunisia. Energy Rep 2:35–39
Shahrestani AB, Alshuraiaan B, Izadi M (2021) Combined natural convection-FSI inside a circular enclosure divided by a movable barrier. Int Commun Heat Mass Transfer 126:105–426
Sharafeldin MA, Grof G (2018) Experimental investigation of flat plate solar collector using CeO2-water nanofluid. Energy Convers Manage 155:32–41
Shehzad SA, Alshuraiaan B, Kamel MS, Izadi M, Ambreen T (2021a) Influence of fin orientation on the natural convection of aqueous-based nano-encapsulated PCMs in a heat exchanger equipped with wing-like fins. Chem Eng Process Process Intens 160:108–287
Shehzad SA, Mabood F, Rauf A, Izadi M, Abbasi FM (2021b) Rheological features of non-Newtonian nanofluids flows induced by stretchable rotating disk. Phys Scr 96:1–12
Sivakumar V, Ganapathy Sundaram E (2013) Improvement techniques of solar still efficiency: a review. Renew Sustain Energy Rev 28:246–264
Verma SK, Tiwari AK, Tiwari S, Chauhan DS (2018) Performance analysis of hybrid nanofluids in flat plate solar collector as an advanced working fluid. Sol Energy 167:231–241
Wole-osho I, Okonkwo EC, Abbasoglu S, Kavaz D (2020) Nanofluids in solar thermal collectors: review and limitations. Int J Thermophys 41:1–74
World Energy Outlook. Flagship report (2018)
Xiong Q, Alshehri HM, Monfaredi R, Tayebi T, Majdoub F, Hajjar A, Delpisheh M, Izadi M (2022) Application of phase change material in improving trombe wall efficiency: an up-to-date and comprehensive overview. Energy and Buildings 258:111–824
Xiong Q, Altnji S, Tayebi T, Izadi M, Hajjar A, Sundén B, Li LKB (2021a) A comprehensive review on the application of hybrid nanofluids in solar energy collectors. Sustain Energy Technol Assess 47:101–341
Xiong Q, Hajjar A, Alshuraiaan B, Izadi M, Altnji S, Shehzad SA (2021b) State-of-the-art review of nanofluids in solar collectors: a review based on the type of the dispersed nanoparticles. J Clean Prod 310:127–528
Xiong Q, Tayebi T, Izadi M, Siddiqui AA, Ambreen T, Li LKB (2021c) Numerical analysis of porous flat plate solar collector under thermal radiation and hybrid nanoparticles using two-phase model. Sustain Energy Technol Assess 47:101–404
Yan SR, Izadi M, Sheremet MA, Pop I, Oztop HF, Afrand M (2020) Inclined Lorentz force impact on convective-radiative heat exchange of micropolar nanofluid inside a porous enclosure with tilted elliptical heater. Int Commun Heat Mass Transfer 117:104–762
Yousefi T, Shojaeizadeh E, Veysi F, Zinadini S (2012a) An experimental investigation on the effect of pH variation of MWCNT-H2O nanofluid on the efficiency of a flat-plate solar collector. Sol Energy 86:771–779
Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S (2012b) An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flat-plate solar collectors. Renewable Energy 39:293–298
Ziyadanogullari NB, Yucel HL, Yildiz C (2018) Thermal performance enhancement of flat-plate solar collectors by means of three different nanofluids. Ther Sci Eng Prog 8:55–65
