Potential modeling: conditional independence matters

Helmut Schaeben1
1Geophysics and Geoinformatics, TU Bergakademie Freiberg, Freiberg, Germany

Tóm tắt

Từ khóa


Tài liệu tham khảo

Agterberg, F.P., Bonham-Carter, G.F., Wright, D.F.: Statistical pattern integration for mineral exploration. In: Gaál, G., Merriam, D.F. (eds.) Computer Applications in Resource Estimation Prediction and Assessment for Metals and Petroleum, pp. 1–21. Pergamon Press, Oxford–New York (1990)

Aitchison, J.: The Statistical Analysis of Compositional Data. Chapman & Hall, reprinted in 2003 with additional material by The Blackburn Press (1986)

Aitchison, J.: The statistical analysis of compositional data (with discussion). J. R. Stat. Soc. Ser. B (Statistical Methodology) 44, 139–177 (1982)

Bandemer, H., Näther, W.: Fuzzy data analysis. Springer, Berlin (1992)

Billheimer, D., Guttorp, P., Fagan, W.F.: Statistical interpretation of species composition. J. Am. Stat. Assoc. 96, 1205–1214 (2001)

Bishop, C.M.: Patter recognition and machine learning. Springer, Berlin (2006)

Bonham-Carter, G.F., Agterberg, F.P.: Application of a microcomputer based geographic information system to mineral-potential mapping. In: Hanley, J.T., Merriam, D.F. (eds.) Microcomputer-based Applications in Geology, II, Petroleum, pp. 49–74. Pergamon Press, New York (1990)

Chilès, J.-P., Delfiner, P.: Geostatistics-Modeling Spatial Uncertainty. Wiley, New York (1999)

Chung, C.-J., Fabbri, A.G.: Modelling target maps of future gold occurrences with combination of categorical and continuous conditionally dependent supporting patterns. In: Proceedings of the 12th SGA Biennial Meeting, pp. 476–479. Uppsala, Sweden, 12–15 August 2013

Fabbri, A.G., Poli, S., Patera, A., Cavallin, A., Chung, C.-J.: Estimation of information loss when masking conditional dependence and categorizing continuous data, Further experiments on a database for spatial prediction modelling in Northern Italy. In: 15th Annual Conference of the International Association for Mathematical Geosciences, Madrid, 2–6 September (2013)

Good, I.J.: The Estimation Of Probabilities: An Essay on Modern Bayesian Methods. Research Monograph No. 30. The MIT Press, Cambridge, MA, USA (1968)

Good, I.J.: Probability and the Weighing of Evidence. Griffin, London (1950)

Hand, D.J., Yu, K.: Idiot’s Bayes - not so stupid after all? Int. Stat. Rev. 69, 385–398 (2001)

Harris, D.V., Zurcher, L., Stanley, M., Marlow, J., Pan, G.: A comparative analysis of favorability mappings by weights of evidence, probabilistic neural networks, discriminant analysis, and logistic regression. Nat. Resour. Res. 12, 241–255 (2003)

Hastie, T., Tibshirani, R., Friedman, J.: The Elements of Statistical Learning. Springer, Berlin (2001)

Hosmer, D.W., Lemeshow, S.: Applied Logistic Regression, 2nd edn. Wiley, New York (2000)

Hronsky, J.M.A., Groves, D.I.: Science of targeting: definition, strategies, targeting and performance measurement. Aust. J. Earth. Sci. 55, 3–12 (2008)

Moguerza, J.M., Muñoz, A.: Support vector machines with applications. Stat. Sci. 21, 322–336 (2006)

Müller, P., Rios Insua, D.: Issues in Bayesian analysis of neural network models. Neural Comput. 10, 740–770 (1998)

Pawlowsky-Glahn, V., Buccianti, A.: Compositional Data Analysis: Theory and Applications. Wiley, New York (2011)

Pawlowsky-Glahn, V., Egozcue, J.-J.: Compositional data and their analysis—an introduction. Geol. Soc. Lond. Spec. Publ. 264, 1–10 (2006). doi: 10.1144/GSL.SP.2006.264.01.01

Pearson, K.: Mathematical contributions to the theory of evolution. On a form of spurious correlations which may arise when indices are used in the measurement of organs. Proc. R. Soc. Lond. 60, 489–498 (1897)

Porwal, A., Carranza, E.J.M., Hale, M.: Knowledge-driven and data-driven fuzzy models for predictive mineral potential mapping. Nat. Resour. Res. 12, 1–25 (2003)

R Development Core Team: R—A language and environment for statistical computing. R Foundation for Statistical Computing, http://www.R-project.org/ , Vienna, Austria (2013)

Russell, S., Norvig, P.: Artificial Intelligence, a Modern Approach, 2nd edn. Prentice Hall, Englewood Cliffs (2003)

Schaeben, H.: A mathematical view of weights-of-evidence, conditional independence, and logistic regression in terms of markov random fields. Math. Geosci. (2013). doi: 10.1007/s11004-013-9513-y

Schaeben, H., van den Boogaart, K.G.: Comment on “A conditional dependence adjusted weights of evidence model” by Minfeng Deng in Natural Resources Research 18(2009), 249–258. Nat. Resour. Res. 20, 401–406 (2011)

Schölkopf, B., Smola, A.J.: Learning with Kernels. MIT Press, Cambridge (2002)

Skabar, A.: Modeling the spatial distribution of mineral deposits using neural networks. Nat. Resour. Model. 20, 435–450 (2007)

Smola, A.J., Vishwanathan, S.V.N.: Introduction to Machine Learning. Cambridge University Press, Cambridge (2008)

Sutton, C., McCallum, A.: An introduction to conditional random fields for relational learning. In: Getoor, L., Taskar, B. (eds.) Introduction to Statistical Relational Learning, pp. 93–127. MIT Press, Cambridge (2007)

van den Boogaart, K.G., Tolosana-Delgado, R.: Analyzing Compositional Data with R. Springer, Berlin (2013)

Vapnik, V.N.: The Nature of Statistical Learning Theory, 2nd edn. Springer, Berlin (2000)

Zhang, D., Agterberg, F.P., Cheng, Q., Zuo, R.: A comparison of modified fuzzy weights of evidence, fuzzy weights of evidence, and logistic regression for mapping mineral prospectivity. Math. Geosci. (2013). doi: 10.1007/s11004-013-9496-8

Zhang, K., Peters, J., Janzing, D., Schölkopf, B.: Kernel-based conditional independence test and application in causal discovery. In: Cozman, F.G., Pfeffer, A. (eds.) Proceedings of the 27th Conference on Uncertainty in Artificial Intelligence (UAI 2011), pp. 804–813. AUAI Press, Corvallis (2011)