Các tác động tiềm tàng từ sự rơi tephra đến hệ thống điện: một tổng quan và các chiến lược giảm thiểu

Bulletin Volcanologique - Tập 74 - Trang 2221-2241 - 2012
J. B. Wardman1, T. M. Wilson1, P. S. Bodger2, J. W. Cole1, C. Stewart1
1Department of Geological Sciences, University of Canterbury, Christchurch, New Zealand
2Department of Electrical and Computer Engineering, University of Canterbury, Christchurch, New Zealand

Tóm tắt

Xã hội hiện đại phụ thuộc rất nhiều vào một nguồn cung điện đáng tin cậy. Trong các vụ phun trào núi lửa mạnh, sự ô nhiễm tephra đối với các mạng lưới (hệ thống) điện có thể ảnh hưởng đến độ tin cậy của nguồn cung. Các sự cố mất điện có thể gây ra những tác động dây chuyền đáng kể đến các lĩnh vực cơ sở hạ tầng quan trọng khác và toàn bộ xã hội. Bài báo này tổng hợp các tác động đã biết đến đối với các hệ thống điện sau các trận rơi tephra từ năm 1980. Các tác động chính bao gồm (1) mất điện do sự phóng điện qua cách điện gây ra bởi ô nhiễm tephra, (2) gián đoạn tại các cơ sở phát điện, (3) mất điện được kiểm soát trong quá trình vệ sinh tephra, (4) mài mòn và ăn mòn thiết bị tiếp xúc và (5) đứt đường dây (dây dẫn) do tải trọng tephra. Trong số các tác động này, sự phóng điện qua cách điện là sự gián đoạn phổ biến nhất. Bài đánh giá nêu bật nhiều trường hợp của các hệ thống điện cho thấy có khả năng chịu đựng sự rơi tephra, cho thấy rằng các ngưỡng thất bại tồn tại và nên được xác định để tránh các gián đoạn không mong muốn trong tương lai. Để đáp ứng nhu cầu này, chúng tôi đã xây dựng một hàm độ yếu có thể định lượng khả năng xảy ra sự phóng điện qua cách điện ở các độ dày khác nhau của tephra. Cuối cùng, dựa trên đánh giá của chúng tôi về các nghiên cứu điển hình, các chiến lược giảm thiểu tiềm năng được tổng hợp. Cụ thể, việc tránh sự phóng điện qua cách điện do tephra bằng cách vệ sinh các cơ sở quan trọng như các địa điểm phát điện và các trạm biến áp truyền tải và phân phối là điều cực kỳ quan trọng để duy trì tính toàn vẹn của hệ thống điện.

Từ khóa

#tephra #hệ thống điện #phóng điện qua cách điện #mất điện #giảm thiểu tác động

Tài liệu tham khảo

Akkar S, Sucuoğlu H, Yakuta A (2005) Displacement-based fragility functions for low and mid-rise ordinary concrete buildings. Earthquake Spectra 21(4):901–927 Al-Hamoudi IY (1995) Performance of HV insulators under heavy natural pollution conditions. Proceedings of the Seventh International Conference on Transmission and Distribution Construction and Live Line Maintenance ESMO-95, 29 Oct–3 Nov, pp 25–31 Australian/New Zealand Standards (AS/NZS) ISO 31000 (2009) Risk management—principles and guidelines. Jt Australian New Zealand Standard, superseding AS/NZS 4360: 2004, 37 p Baxter PJ (1990) Medical effects of volcanic eruptions. I. Main causes of death and injury. Bull Volcanol 52:532–544 Baxter P, Boyle R, Cole P, Neri A, Spence R, Zuccaro G (2005) The impacts of pyroclastic surges on buildings at the eruption of the Soufrière Hills volcano, Montserrat. Bull Volcanol 67:292–313 Bebbington M, Cronin S, Chapman I, Turner M (2008) Quantifying volcanic ash fall hazard to electricity infrastructure. J Volcanol Geotherm Res 177:1055–1062 Berizzi A, Merlo M, Zeng Y, Marannino P, Scarpellini P (2000) Determination of the N-1 security maximum transfer capability through power corridors. Proceedings of the Power Engineering Society Winter Meeting, 23–27 Jan. IEEE 3:1739–1744 Billinton R, Allan R (1988) Reliability assessment of large electric power systems. Kluwer Academic Publishers, Boston Blong RJ (1984) Volcanic hazards: a sourcebook on the effects of eruptions. Academic, Australia Blong R (2003) Building damage in Rabaul, Papua New Guinea, 1994. Bull Volcanol 65:43–54 Blong R, McKee C (1995) The Rabaul eruption 1994: Destruction of a town. Natural Hazards Research Centre, Macquarie University, Australia 52 p Bonadonna C, Phillips JC, Houghton BF (2005) Modeling tephra sedimentation from a Ruapehu weak plume eruption. J Geophys Res 110(B8) B08209, AGU. doi:10.1029/2004JB003515 Buck CR, Connelly JW (1980) Effects of volcanic ash on resistivity of standard specification substation crushed rock surfacing under simulated rainfall. Bonneville Power Administration, Laboratory Report ERJ-80-50, 20 p Cakebread RJ, Brown HJ, Dawkins RB (1978) Automatic insulator-washing system to prevent flashover due to pollution. Proc Inst Electr Eng 125(12):1363–1366 Carlson, L. (1998) Planning the restoration of Rabaul: Risk, compromise and mitigation. Proceedings of the IEPNG Conference ‘98, Engineering in Natural Disasters: Survival, Relief and Restoration, 25-27 Sep, Rabaul, Papua New Guinea, pp 49–58 Connor C, Hill B, Winfrey B, Franklin N, Femina P (2001) Estimation of volcanic hazards from tephra fallout. Nat Hazards Rev 2(1):33–42 Cronin SJ, Neall VE, Lecointre JA, Hedley MJ, Loganathan P (2003) Environmental hazards of fluoride in volcanic ash: a case study from Ruapehu volcano, New Zealand. J Volcanol Geotherm Res 121:271–291 Electric Power Research Institute (EPRI) (2002) Guide to corona and arcing inspection of overhead transmission lines, EPRI Rep 1001910, 2002 Ely CHA, Lambeth PJ, Looms JST (1978) The booster shed: prevention of flashover of polluted substation insulators in heavy wetting. IEEE Trans Power Appar Syst PAS-97(6):2187–2197 Farzaneh N, Chisholm W (2009) Insulators for icing and polluted environments. Wiley-IEEE Press, Picataway Filho OO, Cardoso JA, de Mello DR, de Azevedo RM, Carvalho SG (2010) The use of booster sheds to improve the performance of 800kV multicone type insulators under heavy rain. Proceedings of the 2010 International Conference on High Voltage Engineering and Application (ICHVE), 11–14 Oct, pp 485–488 Global Facility for Disaster Reduction and Recovery (GFDRR) (2011) Volcano risk study: Volcano hazard and exposure in GFDRR priority countries and risk mitigation measures. NGI Report 20100806, 3 May 2011 Gutman I, Djurdjevic I, Eliasson AJ, Söderström P, Wallin L. (2011) Influence of air-borne ashes on outdoor insulation. Proceedings of the SC B2 Conference, Reykjavic, Iceland, 6 p Hall ML, Robin C, Beate B, Mothes P, Monzier M (1999) Tungurahua Volcano, Ecuador: structure, eruptive history and hazards. J Volcanol Geotherm Res 91:1–21 Hansell AL, Horwell CJ, Oppenheimer C (2006) The health hazards of volcanoes and geothermal areas. Occup Env Med 63(2):149–156 Horwell CJ, Baxter PJ (2006) The respiratory health hazards of volcanic ash: a review for volcanic risk mitigation. Bull Volcanol 69:1–24 Institute of Electrical and Electronics Engineers (IEEE) Standard 80 (2000) IEEE guide for safety in AC substation grounding, IEEE Std 80-2000, New York, 200 p Institute of Electrical and Electronics Engineers (IEEE) Standard 957 (2005) IEEE guide for cleaning insulators. IEEE Std 957-2005, New York, 77 p SMEC International (1999) Rebuilding Rabaul. Paper prepared for the 1999 Engineering Excellence Awards. SMEC International Pty. Ltd International Electrotechnical Commission (IEC) Standard 60815 (2008) Selection and dimensioning of high voltage insulators intended for use in polluted conditions, IEC/TS 60815, 108 p Johnston DM (1997a) The impacts of recent falls of volcanic ash on public utilities in two communities in the United States of America. Institute of Geological & Nuclear Sciences science report 97/5, 21 p Johnston DM (1997b) Physical and social impacts of past and future volcanic eruptions in New Zealand. Unpublished PhD thesis, Massey University, New Zealand Johnston DM, Houghton BF, Neall VE, Ronan KR, Paton D (2000) Impacts of the 1945 and 1995–1996 Ruapehu eruptions, New Zealand: an example of increasing societal vulnerability. GSA Bull 112(5):720–726 Karady G (2007) Concept of energy transmission and distribution. In: Grigsby L (ed) Electric power generation, transmission and distribution. Taylor & Francis, Boca Raton, Ch 8 Kim SH, Cherney EA, Hackam R (1990) The loss and recovery of hydrophobicity of RTV silicone rubber insulator coatings. IEEE Trans Power Deliv 5(3):1491–1500 Lannes W, Schneider H (1997) Pollution severity performance chart; key to just-in-time insulator maintenance. IEEE Trans Power Deliv 12(4):1493–1500 Lawrence RF (1988) The relation of electricity to society. Summary of an address on behalf of The Electrical Institute of Electrical and Electronics Engineers, IEEE Centennial Meeting. IEEE Power Engineering Review, Aug 1988 Mee M, Bodger P, Wardman J (2012) Volcanic ash contamination of high voltage insulators: revising insulator design to aid the electrostatic repulsion of volcanic ash. Proceedings of the Electricity Engineers Association Conference and Exhibition, 20-22 June 2012, Auckland, New Zealand Meredith I (2007) Sharing experiences with applying coating to turbines. Hydro Rev Worldw 15(3):34,36–38,40–41 Miller TP, Chouet BA (eds) (1994) The 1989–1990 eruptions of Redoubt Volcano, Alaska. J Volcanol Geotherm Res 62:530 Nellis CA, Hendrix KW (1980) Progress report on the investigation of volcanic ash fallout from Mount St. Helens. Bonneville Power Administration, Laboratory Report ERJ-80-47, 44 p Porter K, Kennedy R, Bachman R (2007) Creating fragility functions for performance based earthquake engineering. Earthq Spectra 23:471–489 Richards CN, Renowden JD (1997) Development of a remote insulator contamination monitoring system. IEEE Trans Power Deliv 12(1):389–397 Rinaldi SM, Peerenboom JP, Kelly TK (2001) Identifying, understanding and analysing critical infrastructure independencies. IEEE Control Syst Mag 21:11–25 Rogers, E.J. (1982) Volcanic ash modified safety characteristics of the Schrag substation grounding grid. Bonneville Power Administration Laboratory Report ERJ-82-12, 12 p Rose WI, Durant AJ (2009) Fine ash content of explosive eruptions. J Volcanol Geotherm Res 186(1–2):32–39 Rossetto T, Elnashai A (2003) Derivation of vulnerability functions for European-type RC structures based on observational data. Eng Struct 25:1241–1263 Sarkinen CF, Wiitala JT (1981) Investigation of volcanic ash in transmission facilities in the Pacific Northwest. IEEE Trans Power Appar Syst PAS-100:2278–2286 Siebert L, Simkin T (2002) Volcanoes of the world: an illustrated catalog of Holocene volcanoes and their eruptions. Smithsonian Institution, Global Volcanism Program Digital Information Series, GVP-3. http://www.volcano.si.edu/world/. Accessed 12 Dec 2011 Spence RJ, Kelman I, Baxter PJ, Zuccaro G, Petrazzuoli S (2005) Residential building and occupant vulnerability to tephra fall. Nat Hazards Earth Syst Sciences 5:477–494 Sundararajan R, Gorur RS (1996) Role of non-soluble contaminants on the flashover voltage of porcelain insulators. IEEE Trans Dielectrics Electrical Insulation 3(1):113–118. doi:10.1109/94.485522 Sword-Daniels, VL (2010) The impacts of volcanic ash fall on critical infrastructure systems. Unpublished Masters thesis, Department of Civil, Environmental and Geomagnetic Engineering, University College London, UK, 104 p Sword-Daniels V, Wardman J, Stewart C, Wilson T, Johnston D, Rossetto T (2011) Infrastructure impacts, management and adaptations to eruptions at Volcán Tungurahua, Ecuador, 1999-2010. GNS Science Report 2011/24, 76 p Transpower (1995) Report on volcanic ash contamination. Unpublished internal report, 15 p Wardman J, Sword-Daniels V, Stewart C, Wilson T (2012a) Impact assessment of the May 2010 eruption of Pacaya volcano, Guatemala. GNS Science Report 2012/09, 99 p Wardman J, Wilson T, Bodger P, Cole J, Johnston D (2012b) Investigating the electrical conductivity of volcanic ash and its effect on HV power systems. Phys Chem Earth. doi:10.1016/j.pce.2011.09.003 Wightman A, Bodger P, (2011) Volcanic Ash Contamination of High Voltage Insulators. Proceedings from the Electrical Engineers Association Conference, Auckland, New Zealand, 23-24 June, 2011, 17 p Wilson T, Daly M, Johnston D (2009) Review of impacts of volcanic ash on electricity distribution systems, broadcasting and communication networks. Auckland Engineering Lifelines Group (AELG) Technical Report No.051, 79 p Wilson TM, Cole JW, Stewart C, Cronin SJ, Johnston DM (2011) Ash storm: impacts of wind remobilised volcanic ash on rural communities and agriculture following the 1991 Hudson eruption, southern Patagonia, Chile. Bull Volcanol 73(3):223–239 Wilson T, Stewart C, Sword-Daniels V, Leonard G, Johnston D, Cole J, Wardman J, Wilson G, Barnard S (2012) Volcanic ash impacts on critical infrastructure. Phys Chem Earth. doi:10.1016/j.pce.2011.06.006 Wu D, Astrom U, Almgren B, Soderholm S (1998) Investigation into alternative solutions for HVDC station post insulators. Proceedings of the 1998 International Conference on Power System Technology, POWERCON '98, 1:512-515 Wu G, Cao H, Xu X, Xiao H, Li S, Xu O, Liu B, Wang O, Wang Z, Ma Y (2009) Design and application of inspection system in a self-governing mobile robot system for high voltage transmission line inspection. Proceedings of the 2009 Power and Energy Engineering Conference, APPEEC 2009, Asia-Pacific, pp 1–4 Yasuda M, Fujimura T (1976) A study and development of high water pressure hot-line insulator washing equipment for 500kV substation. IEEE Trans Power Appar Syst PAS-95(6):1919–1932