Potential for biogas production from the anaerobic digestion of chicken droppings in Morocco
Tóm tắt
The chicken droppings can have a negative impact on the environment and public health. In this work, we are interested in treating this waste by anaerobic digestion and we estimate the national potential of green energy produced by anaerobic digestion and map the areas that need digesters to improve national poultry farming. The anaerobic digestion of this waste is performed in three steps. In the first step, the chicken droppings are placed in a laboratory digester without pretreatment. In the second step, the droppings are placed in an industrial digester without pretreatment. In the third step, a methanogenic inoculum is incubated with the chicken droppings in a batch digester. The biogas production is measured by manometer, and the composition of this biogas is analyzed by gas chromatography. The chicken droppings without pretreatment generated a small amount of biogas (11.24 and 20 m3 for one ton of waste fresh) in the laboratory and in the prototype digester. After pretreatment (heating and grinding), this waste produced a large quantity of biogas, on the order 230,58 ml/gCOD, equivalent to 64.4 m3 for one ton of fresh waste, with 60.2 % methane, 38.8 % carbon dioxide and 0 % hydrogen. This biogas production has a lower heating value of 385 kWh for one ton of chicken droppings. Based on these results, our country has high potential for green energy (200 GWh) by transforming the droppings of broilers by anaerobic digestion. In Morocco, the installation of biogas digesters in poultry units is an effective technique for this industry, because this waste is a potential energy source.
Tài liệu tham khảo
Afilal ME, Filali-Meknassi Y, Auriol M (2007) Valorisation des déchets organiques par production de biogaz: l’énergie de biomasse., in: Les énergies renouvelables au Maroc-Le débat est lané. Rabat Maroc 112–120
Afilal ME, Belkhadir N, Daoudi H, Elasri O (2013) Fermentation méthanique des différents substrats organiques (Methanic fermentation of different organic substrates). J Mater Env Sci 11–16
Afilal ME, Elasri O, Merzak Z (2014) Caractérisations des déchets organiques et évaluation du potentiel Biogaz (Organic waste characterization and evaluation of its potential biogas). J Mater Env, Sci 5
Agriculture du Maghreb (2010) Filière avicole dynamisme permanent. 94–96
Alfa IM, Dahunsi SO, Iorhemen OT, Okafor CC, Ajayi SA (2014) Comparative evaluation of biogas production from Poultry droppings, Cow dung and Lemon grass. Bioresour Technol 157:270–277. doi:10.1016/j.biortech.2014.01.108
APHA (1999) Standard methods for the examination of water and wastewater. American Public Health Association and Water Environment Federation, Washington DC
APHA (2005) Standard methods for the examination of water and wastewater. American Public Health Association and Water Environment Federation
Arifin B, Bono A, Janaun J (2006) The transformation of chicken manure into mineralized organic fertilizer. J Sustain Sci Manag 1:58–63
Ariunbaatar J, Panico A, Esposito G, Pirozzi F, Lens PNL (2014) Pretreatment methods to enhance anaerobic digestion of organic solid waste. Appl Energy 123:143–156. doi:10.1016/j.apenergy.2014.02.035
Bougrier C, Delgenès JP, Carrère H (2007) Impacts of thermal pre-treatments on the semi-continuous anaerobic digestion of waste activated sludge. Biochem Eng J 34:20–27. doi:10.1016/j.bej.2006.11.013
Brodeur C, Crowley D, Desmeules X, Pigeon S, St-Arnaud R-M (2008) La biométhanisation à la ferme
Budiyono Widiasa, Johari IN, Sunarso S (2010) The influence of total solid contents on biogas yield from cattle manure using rumen fluid inoculum. Energy Res. J 1:6–11
Budzianowski WM (2016) A review of potential innovations for production, conditioning and utilization of biogas with multiple-criteria assessment. Renew Sustain Energy Rev 54:1148–1171. doi:10.1016/j.rser.2015.10.054
Buenrostro O, Bocco G, Cram S (2001) Classification of sources of municipal solid wastes in developing countries. Resour Conserv Recycl 32:29–41. doi:10.1016/S0921-3449(00)00094-X
Carlsson M, Lagerkvist A, Morgan-Sagastume F (2012) The effects of substrate pre-treatment on anaerobic digestion systems: a review. Waste Manag 32:1634–1650. doi:10.1016/j.wasman.2012.04.016
Carrère H, Dumas C, Battimelli A, Batstone DJ, Delgenès JP, Steyer JP, Ferrer I (2010) Pretreatment methods to improve sludge anaerobic degradability: a review. J Hazard Mater 183:1–15. doi:10.1016/j.jhazmat.2010.06.129
Castelli F, Lentini V, Maugeri M (2012) Static and dynamic waste characterization, in: Proc., 5th European Geosynthetics Congress, EUROGEO. pp. 105–110
Chen Z, Jiang X (2014) Microbiological Safety of Chicken Litter or Chicken Litter-Based Organic Fertilizers: a Review. Agriculture 4:1–29. doi:10.3390/agriculture4010001
Chen Y, Cheng JJ, Creamer KS (2008) Inhibition of anaerobic digestion process: a review. Bioresour Technol 99:4044–4064. doi:10.1016/j.biortech.2007.01.057
Chun CW, Zainol NFM, Jamaludin N (2015) Optimization of biogas production from poultry manure wastewater in 250 ml flasks. J Teknol 75:275–285
CRAAQ (2008) La biométhanisation à la ferm. Cent. Réf. En Agric. Agroaliment, Qué 5
Elasri O, Afilal Elamin M (2014) Etude de risque de contamination des eaux marocaines par les fientes de poulet de chair. Int J Innov Appl Stud 7:593–601
Estevez MM, Linjordet R, Morken J (2012) Effects of steam explosion and co-digestion in the methane production from Salix by mesophilic batch assays. Bioresour Technol 104:749–756. doi:10.1016/j.biortech.2011.11.017
FAOSTAT (2015) Food and Agriculture Organization of the United Nations. Statistics Division, compare data, production live animals, Morocco, Algeria, Egypt, Libya, Mauritania and Tunisia, Chickens, Stocks
Fischer T (2007) Expérience allemande: politique et appresentissage technologique, in: Pesentation on CRAAQ, Conference in Montreal
Ganoulis J (2012) Risk analysis of wastewater reuse in agriculture. Int J Recycl Org Waste Agric 1:1–9
González-Fernández C, García-Encina PA (2009) Impact of substrate to inoculum ratio in anaerobic digestion of swine slurry. Biomass Bioenergy 33:1065–1069. doi:10.1016/j.biombioe.2009.03.008
Hamilton DW (2012) Anaerobic digestion of animal manures: methane production potential of waste materials, cooperative extension, Service edn. Oklahoma State University, Division of Agricultural Sciences and Natural Resources, USA
Jun P, Gibbs M, Gaffney K (2002) CH4 and N2O emissions from livestock manure. Good practice guidance and uncertainty management in national greenhouse gas inventories. IPCC by the Institue for Global Environmental Strategies. Penman J, Kruger D, Galbally I, Hayama, Japan, pp 321–381
Karwowska E (2005) Microbiological air contamination in farming environment. Pol J Environ Stud 14:445–449
Kostadinova G (2013) Sanitary hygienic assessment of drinking water from underground source at a pig farm. Agric Sci Technol 5:448–454
Kostadinova G, Petkov G, Denev S, Miteva C, Stefanova R, Penev T (2014) Microbial pollution of manure, litter, air and soil in a poultry farm. Bulg J Agric Sci 20:56–65
Kumaran P, Hephzibah D, Sivasankari R, Saifuddin N, Shamsuddin AH (2016) A review on industrial scale anaerobic digestion systems deployment in Malaysia: opportunities and challenges. Renew Sustain Energy Rev 56:929–940. doi:10.1016/j.rser.2015.11.069
Ministère de l’Agriculture, et de la Pêche Maritime, Ministère de l’Agriculture (2012) Situation de l’Agriculture Marocaine, in: Produits de Terroir: Une Stratégie D’action Le Long de La Chaine de Valeurs. Maroc, pp. 169–170
Niu Q, Takemura Y, Kubota K, Li Y-Y (2015) Comparing mesophilic and thermophilic anaerobic digestion of chicken manure: microbial community dynamics and process resilience. Waste Manag 43:114–122. doi:10.1016/j.wasman.2015.05.012
Nopharatana A, Pullammanappallil PC, Clarke WP (2007) Kinetics and dynamic modelling of batch anaerobic digestion of municipal solid waste in a stirred reactor. Waste Manag 27:595–603
Perimenis A, van Aarle IM, Nicolay T, Jacquet N, Meyer L, Richel A, Gerin PA (2015) Metabolic profile of mixed culture acidogenic fermentation of lignocellulosic residues and the effect of upstream substrate fractionation by steam explosion. Biomass Convers. Biorefinery 6:25–37. doi:10.1007/s13399-015-0164-8
Plewa K, Lonc E (2011) Analysis of airborne contamination with bacteria and moulds in poultry farming: a case stady. Pol J Environ Stud 20:725–731
Saady NMC, Massé DI (2016) Feasibility and performance of high-rate psychrophilic dry anaerobic digestion of high solids content dairy manure. J Recycl Org Waste Agric, Int. doi:10.1007/s40093-016-0115-9
Salam B, Biswas S, Rabbi MS (2015) Biogas from mesophilic anaerobic digestion of cow dung using silica gel as catalyst. Procedia Eng. 105:652–657. doi:10.1016/j.proeng.2015.05.044
Stefanova R, Kostadinova G, Georgieva N (2012) Water quality assessment from own source at poultry farm located in rural region in South Bulgaria. Agric Sci Technol 4:143–147
Val del Río A, Morales N, Isanta E, Mosquera-Corral A, Campos JL, Steyer JP, Carrère H (2011) Thermal pre-treatment of aerobic granular sludge: impact on anaerobic biodegradability. Water Res 45:6011–6020. doi:10.1016/j.watres.2011.08.050
Van Aarle IM, Perimenis A, Lima-Ramos J, de Hults E, George IF, Gerin PA (2015) Mixed inoculum origin and lignocellulosic substrate type both influence the production of volatile fatty acids during acidogenic fermentation. Biochem Eng J 103:242–249. doi:10.1016/j.bej.2015.07.016
Vindis P, Mursec B, Janzekovic M, Cus F (2009) The impact of mesophilic and thermophilic anaerobic digestion on biogas production. J Achiev Mater Manuf Eng 36:192–198
Yadvika Santosh, Sreekrishnan TR, Kohli S, Rana V (2004) Enhancement of biogas production from solid substrates using different techniques—a review. Bioresour Technol 95:1–10. doi:10.1016/j.biortech.2004.02.010
Zennaki-Bensouda Z, Zald A, Lamini H, Aubineau M, Boulif M (1996) Fermentation méthanique des déchets de bovins: étude du temps de rétention hydraulique, de la température et de la concentration en