Potential effects of using non-combustible tobacco and nicotine products during pregnancy: a systematic review

Harm Reduction Journal - Tập 17 Số 1 - 2020
Marewa Glover1, Carl Phillips2
1Centre of Research Excellence: Sovereignty & Smoking, 8 Toroa Street, Torbay, Auckland, 0632, New Zealand
2New Hampshire, USA

Tóm tắt

Abstract Background

The range of risk reduced alternatives to smoking tobacco is increasing and so is use among pregnant women. The substantial harms of smoking during pregnancy are well established and there is reason to believe that nicotine alone is somewhat harmful. Differences in the exposure chemistry strongly suggest that the effects of using smoke-free nicotine products (including pharmaceutical nicotine products, smokeless tobacco, and electronic cigarettes containing nicotine) fall somewhere in the range between zero risk to the risk from smoking. How much lower risk these consumption choices are in terms of pregnancy outcomes, however, remains uncertain.

Methods

We reviewed the literature on smoke-free nicotine and tobacco product exposure and birth-outcome endpoints. Studies were included if they compared outcomes to either no nicotine use or smoking. We searched Google Scholar using broad search terms and additional articles were snowballed from citations. We report what could be learned from each study, given its methods.

Results

Of the 21 studies reviewed, 12 reported on the use of nicotine replacement therapies, 7 on Swedish snus, 1 on Alaskan iq’mik, and 1 on e-cigarettes. The range of results tends to support the prediction that smoke-free product use during pregnancy probably increases the risk of some negative birth outcomes, but that any effect is less than that from smoking. However, the limitations of epidemiology are such that no more-precise a conclusion is possible.

Discussion

The available epidemiology does not change our prior beliefs, based on other evidence and knowledge, that the risks from smoke-free nicotine and tobacco are lower than those for smoking, though it suggests they are non-zero. However, it also demonstrates that the epidemiology is unlikely to provide precise quantitative estimates. This is not just a matter of lack of studies; given the inherent limitation of these studies, doubling or tripling the corpus of available studies would add little precision. For the foreseeable future, decisions about using these products will need to be made based on rough estimates, based on a variety of forms of evidence, and qualitative comparisons.

Từ khóa


Tài liệu tham khảo

Einarson A, Riordan S. Smoking in pregnancy and lactation: a review of risks and cessation strategies. Eur J Clin Pharmacol. 2009;65(4):325.

Lange S, Probst C, Rehm J, Popova S. National, regional, and global prevalence of smoking during pregnancy in the general population: a systematic review and meta-analysis. Lancet Glob Health. 2018;6(7):e769–e76.

Hernández-Díaz S, Schisterman EF, Hernán MA. The birth weight “paradox” uncovered? Am J Epidemiol. 2006;164(11):1115–20.

Clarke E, Thompson K, Weaver S, Thompson J, O’Connell G. Snus: a compelling harm reduction alternative to cigarettes. Harm Reduct J. 2019;16(62):1–17.

Lee PN. Epidemiological evidence relating snus to health – an updated review based on recent publications. Harm Reduct J. 2013;10(36):1–7.

Scientific Committee on Emerging and Newly Identified Health Risks. Health effects of smokeless tobacco products. European Commission, Health and Consumer Protection Directorate-General. Brussels: Scientific Committee on Emerging and Newly Identified Health Risks; 2008.

Lee PN. Summary of the epidemiological evidence relating snus to health. Regul Toxicol Pharmacol. 2011;59(2):197–214.

Bar-Zeev Y, Lim LL, Bonevski B, Gruppetta M, Gould GS. Nicotine replacement therapy for smoking cessation in pregnancy. Med J Aust. 2017;208(1):1.

Coleman T, Chamberlain C, Cooper S, Leonardi-Bee J. Efficacy and safety of nicotine replacement therapy for smoking cessation in pregnancy: systematic review and meta-analysis. Addiction. 2011;106(1):52–61.

Coleman T, Chamberlain C, Davey MA, Cooper SE, Leonardi-Bee J. Pharmacological interventions for promoting smoking cessation during pregnancy. Cochrane Database Syst Rev. 2015;12.

Ginzel K, Maritz GS, Marks DF, Neuberger M, Pauly JR, Polito JR, et al. Critical review: nicotine for the fetus, the infant and the adolescent? J Health Psychol. 2007;12(2):215–24.

Tiesler CM, Heinrich J. Prenatal nicotine exposure and child behavioural problems. Eur Child Adolesc Psychiatry. 2014;23(10):913–29.

Demirhan O. Results of smoking in pregnancy: the genotoxic effect of nicotine or why cigarette should not be smoked in pregnancy? Addict Med Ther Sci. 2017;5:1026.

Spindel ER, McEvoy CT. The role of nicotine in the effects of maternal smoking during pregnancy on lung development and childhood respiratory disease. Implications for dangers of e-cigarettes. Am J Respir Crit Care Med. 2016;193(5):486–94.

Van Der Eijk Y, Petersen AB, Bialous SA. E-cigarette use in pregnancy: a human rights-based approach to policy and practice. Acta obstetricia et Gynecologica Scandinavica. 2017;96(11):1283–8.

Moher D, Shamseer L, Clarke M, Ghersi D, Liberati A, Petticrew M, et al. Preferred reporting items for systematic review and meta-analysis protocols (PRISMA-P) 2015 statement. Syst Rev. 2015;4(1):1.

Gusenbauer M. Google Scholar to overshadow them all? Comparing the sizes of 12 academic search engines and bibliographic databases. Scientometrics. 2018;118:117–214.

Gupta PC, Sreevidya S. Smokeless tobacco use, birth weight, and gestational age: population based, prospective cohort study of 1217 women in Mumbai, India. BMJ. 2004;328(7455):1538.

Steyn K, De Wet T, Saloojee Y, Nel H, Yach D. The influence of maternal cigarette smoking, snuff use and passive smoking on pregnancy outcomes: the Birth To Ten Study. Paediatr Perinat Epidemiol. 2006;20(2):90–9.

Cooper S, Taggar J, Lewis S, Marlow N, Dickinson A, Whitemore R, et al. Effect of nicotine patches in pregnancy on infant and maternal outcomes at 2 years: follow-up from the randomised, double-blind, placebo-controlled SNAP trial. Lancet Respir Med. 2014;2(9):728–37.

Cooper S, Lewis S, Thornton JG, Marlow N, Watts K, Britton J, et al. The SNAP trial: a randomised placebo-controlled trial of nicotine replacement therapy in pregnancy--clinical effectiveness and safety until 2 years after delivery, with economic evaluation. Health Technol Assess. 2014;18(54):1.

Coleman T, Cooper S, Thornton JG, Grainge MJ, Watts K, Britton J, et al. A randomized trial of nicotine-replacement therapy patches in pregnancy. N Engl J Med. 2012;366(9):808–18.

Cooper S, Taggar J, Lewis S, Marlow N, Dickinson A, Whitemore R, et al. 2-year infant and maternal outcomes investigating nicotine-replacement therapy for smoking cessation in pregnancy from the SNAP trial: a randomised controlled trial. Lancet. 2013;382(Suppl 3):S7.

Coleman T, Thornton J, Britton J, Lewis S, Watts K, Coughtrie MW, et al. Protocol for the smoking, nicotine and pregnancy (SNAP) trial: double-blind, placebo-randomised, controlled trial of nicotine replacement therapy in pregnancy. BMC Health Serv Res. 2007;7:2.

Oncken C, Dornelas E, Greene J, Sankey H, Glasmann A, Feinn R, et al. Nicotine gum for pregnant smokers: a randomized controlled trial. Obstet Gynecol. 2008;112(4):859–67.

Pollak KI, Oncken CA, Lipkus IM, Lyna P, Swamy GK, Pletsch PK, et al. Nicotine replacement and behavioral therapy for smoking cessation in pregnancy. Am J Prev Med. 2007;33(4):297–305.

Oncken CA, Hardardottir H, Hatsukami DK, Lupo VR, Rodis JF, Smeltzer JS. Effects of transdermal nicotine or smoking on nicotine concentrations and maternal-fetal hemodynamics. Obstet Gynecol. 1997;90(4):569–74.

Lassen TH, Madsen M, Skovgaard LT, Strandberg-Larsen K, Olsen J, Andersen AMN. Maternal use of nicotine replacement therapy during pregnancy and offspring birthweight: a study within the Danish National Birth Cohort. Paediatr Perinat Epidemiol. 2010;24(3):272–81.

Strandberg-Larsen K, Tinggaard M, Nybo Andersen AM, Olsen J, Grønbæk M. Use of nicotine replacement therapy during pregnancy and stillbirth: a cohort study. BJOG. 2008;115(11):1405–10.

Dhalwani NN, Szatkowski L, Coleman T, Fiaschi L, Tata LJ. Stillbirth among women prescribed nicotine replacement therapy in pregnancy: analysis of a large UK pregnancy cohort. Nicotine Tob Res. 2019;21(4):409–15.

Morales-Suárez-Varela MM, Bille C, Christensen K, Olsen J. Smoking habits, nicotine use, and congenital malformations. Obstet Gynecol. 2006;107(1):51–7.

Dhalwani NN, Szatkowski L, Coleman T, Fiaschi L, Tata LJ. Nicotine replacement therapy in pregnancy and major congenital anomalies in offspring. Pediatrics. 2015;135(5):859–67.

Milidou I, Henriksen TB, Jensen MS, Olsen J, Søndergaard C. Nicotine replacement therapy during pregnancy and infantile colic in the offspring. Pediatrics. 2012;129(3):e652–8.

Gaither KH, Brunner Huber LR, Thompson ME, Huet-Hudson YM. Does the use of nicotine replacement therapy during pregnancy affect pregnancy outcomes? Matern Child Health J. 2009;13(4):497.

Wright L, Thorp J, Pahel-Short L, Hartmann K. Transdermal nicotine delivery systems in pregnancy-pharmacology and fetal effects. J Soc Gynecol Investig. 1996;2(3):246A.

Wright LN, Thorp JM Jr, Kuller JA, Shrewsbury RP, Ananth C, Hartmann K. Transdermal nicotine replacement in pregnancy: maternal pharmacokinetics and fetal effects. Am J Obstet Gynecol. 1997;176(5):1090–4.

Wikström AK, Stephansson O, Cnattingius S. Tobacco use during pregnancy and preeclampsia risk: effects of cigarette smoking and snuff. Hypertension. 2010;55(5):1254–9.

Dahlin S, Gunnerbeck A, Wikström AK, Cnattingius S, Bonamy AK. Maternal tobacco use and extremely premature birth – a population-based cohort study. BJOG. 2016;123(12):1938–46.

Gunnerbeck A, Wikström AK, Bonamy AK, Wickström R, Cnattingius S. Relationship of maternal snuff use and cigarette smoking with neonatal apnea. Pediatrics. 2011;128(3):503–9.

Wikström AK, Cnattingius S, Stephansson O. Maternal use of Swedish snuff (snus) and risk of stillbirth. Epidemiology. 2010;21(6):772–8.

Gunnerbeck A, Bonamy AKE, Wikström AK, Granath F, Wickström R, Cnattingius S. Maternal snuff use and smoking and the risk of oral cleft malformations - a population-based cohort study. PloS One. 2014;9(1):e84715.

England LJ, Levine RJ, Mills JL, Klebanoff MA, Yu KF, Cnattingius S. Adverse pregnancy outcomes in snuff users. Am J Obstet Gynecol. 2003;189(4):939–43.

Nordenstam F, Lundell B, Cohen G, Tessma MK, Raaschou P, Wickström R. Prenatal exposure to snus alters heart rate variability in the infant. Nicotine Tob Res. 2017;19(7):797–803.

McDonnell BP, Bergin E, Regan C. Electronic cigarette use in pregnancy is not associated with low birth weight or preterm delivery. Am J Obstet Gynecol. 2019;220(1):S137.

Hurt RD, Renner CC, Patten CA, Ebbert JO, Offord KP, Schroeder DR, et al. Iqmik – a form of smokeless tobacco used by pregnant Alaska natives: nicotine exposure in their neonates. J Matern Fetal Neonatal Med. 2005;17(4):281–9.

Lash TL, Fox MP, Fink AK. Applying quantitative bias analysis to epidemiologic data. New York: Springer Science + Business Media; 2009.

Phillips CV. Quantifying and reporting uncertainty from systematic errors. Epidemiology. 2003;14(4):459–66.

Phillips CV, LaPole LM. Quantifying errors without random sampling. BMC Med Res Methodol. 2003;3:9.

Phillips CV, Maldonado G. Using Monte Carlo methods to quantify the multiple sources of error in studies. Am J Epidemiol. 1999;149(11):S17.

Lash TL, Fox MP, Fink AK. Applying quantitative bias analysis to epidemiologic data. Bias analysis. https://sites.google.com/site/biasanalysis/. Accessed 23 Oct 2019.