Potential contribution of erythrocyte microRNA to secondary erythrocytosis and thrombocytopenia in congenital heart disease
Tóm tắt
Từ khóa
Tài liệu tham khảo
Verel D . Blood volume changes in cyanotic congenital heart disease and polycythemia rubra vera. Circulation 1961;23:749–53.
Rosenthal A, Button LN, Nathan DG, Miettinen OS, Nadas AS . Blood volume changes in cyanotic congenital heart disease. Am J Cardiol 1971;27:162–7.
Lill MC, Perloff JK, Child JS . Pathogenesis of thrombocytopenia in cyanotic congenital heart disease. Am J Cardiol 2006;98:254–8.
Horigome H, Hiramatsu Y, Shigeta O, Nagasawa T, Matsui A . Overproduction of platelet microparticles in cyanotic congenital heart disease with polycythemia. J Am Coll Cardiol 2002;39:1072–7.
Haga P, Cotes PM, Till JA, Minty BD, Shinebourne EA . Serum immunoreactive erythropoietin in children with cyanotic and acyanotic congenital heart disease. Blood 1987;70:822–6.
Lee Y, Ahn C, Han J et al. The nuclear RNase III Drosha initiates microRNA processing. Nature 2003;425:415–9.
Lee DY, Deng Z, Wang CH, Yang BB . MicroRNA-378 promotes cell survival, tumor growth, and angiogenesis by targeting SuFu and Fus-1 expression. Proc Natl Acad Sci USA 2007;104:20350–5.
Kahai S, Lee SC, Lee DY et al. MicroRNA miR-378 regulates nephronectin expression modulating osteoblast differentiation by targeting GalNT-7. PLoS One 2009;4:e7535.
Viticchie G, Lena AM, Latina A et al. MiR-203 controls proliferation, migration and invasive potential of prostate cancer cell lines. Cell Cycle 2011;10:1121–31.
Bonci D, Coppola V, Patrizii M et al. A microRNA code for prostate cancer metastasis. Oncogene 2016;35:1180–92.
Mitchell PS, Parkin RK, Kroh EM et al. Circulating microRNAs as stable blood-based markers for cancer detection. Proc Natl Acad Sci U.S.A 2008;105:10513–8.
Blennow K, Dubois B, Fagan AM, Lewczuk P, de Leon MJ, Hampel H . Clinical utility of cerebrospinal fluid biomarkers in the diagnosis of early Alzheimer's disease. Alzheimers Dement 2015;11:58–69.
Rathjen T, Nicol C, McConkey G, Dalmay T . Analysis of short RNAs in the malaria parasite and its red blood cell host. FEBS Lett 2006;580:5185–8.
Chen SY, Wang Y, Telen MJ, Chi JT . The genomic analysis of erythrocyte microRNA expression in sickle cell diseases. PLoS ONE 2008;3:e2360.
Opalinska JB, Bersenev A, Zhang Z et al. MicroRNA expression in maturing murine megakaryocytes. Blood 2010;116:e128–38.
Sunderland N, Skroblin P, Barwari T et al. MicroRNA biomarkers and platelet reactivity: the clot thickens. Circ Res 2017;120:418–35.
Kannan M, Atreya C . Differential profiling of human red blood cells during storage for 52 selected microRNAs. Transfusion 2010;50:1581–8.
Doss JF, Corcoran DL, Jima DD, Telen MJ, Dave SS, Chi JT . A comprehensive joint analysis of the long and short RNA transcriptomes of human erythrocytes. BMC Genomics 2015;16:952.
Wang Z, Zhou D, Cao Y et al. Characterization of microRNA expression profiles in blood and saliva using the Ion Personal Genome Machine(®) System (Ion PGM System). Forensic Sci Int Genet 2016;20:140–6.
Bianchi E, Bulgarelli J, Ruberti S et al. MYB controls erythroid versus megakaryocyte lineage fate decision through the miR-486-3p-mediated downregulation of MAF. Cell Death Differ 2015;22:1906–21.
Wang LS, Li L, Li L et al. MicroRNA-486 regulates normal erythropoiesis and enhances growth and modulates drug response in CML progenitors. Blood 2015;125:1302–13.
Bruning U, Cerone L, Neufeld Z et al. MicroRNA-155 promotes resolution of hypoxia-inducible factor 1alpha activity during prolonged hypoxia. Mol Cell Biol 2011;31:4087–96.
Ivan M, Harris AL, Martelli F, Kulshreshtha R . Hypoxia response and microRNAs: no longer two separate worlds. J Cell Mol Med 2008;12:1426–31.
Romania P, Lulli V, Pelosi E, Biffoni M, Peschle C, Marziali G . MicroRNA 155 modulates megakaryopoiesis at progenitor and precursor level by targeting Ets-1 and Meis1 transcription factors. Br J Haematol 2008;143:570–80.
Yao M, Wang X, Tang Y et al. Dicer mediating the expression of miR-143 and miR-155 regulates hexokinase II associated cellular response to hypoxia. Am J Physiol Lung Cell Mol Physiol 2014;307:L829–37.
Honda S, Arakawa S, Nishida Y, Yamaguchi H, Ishii E, Shimizu S . Ulk1-mediated Atg5-independent macroautophagy mediates elimination of mitochondria from embryonic reticulocytes. Nat Commun 2014;5:4004.
O'Connell RM, Taganov KD, Boldin MP, Cheng G, Baltimore D . MicroRNA-155 is induced during the macrophage inflammatory response. Proc Natl Acad Sci U.S.A 2007;104:1604–9.
Turner M, Vigorito E . Regulation of B- and T-cell differentiation by a single microRNA. Biochem Soc Trans 2008;36:531–3.
Zhu N, Zhang D, Chen S et al. Endothelial enriched microRNAs regulate angiotensin II-induced endothelial inflammation and migration. Atherosclerosis 2011;215:286–93.
Pankratz F, Bemtgen X, Zeiser R et al. MicroRNA-155 exerts cell-specific antiangiogenic but proarteriogenic effects during adaptive neovascularization. Circulation 2015;131:1575–89.
Trowbridge EA, Martin JF, Slater DN . Evidence for a theory of physical fragmentation of megakaryocytes, implying that all platelets are produced in the pulmonary circulation. Thromb Res 1982;28:461–75.
Slater DN, Trowbridge EA, Martin JF . The megakaryocyte in thrombocytopenia: a microscopic study which supports the theory that platelets are produced in the pulmonary circulation. Thromb Res 1983;31:163–76.
Hudson JG, Bowen AL, Navia P et al. The effect of high altitude on platelet counts, thrombopoietin and erythropoietin levels in young Bolivian airmen visiting the Andes. Int J Biometeorol 1999;43:85–90.
Lefrancais E, Ortiz-Munoz G, Caudrillier A et al. The lung is a site of platelet biogenesis and a reservoir for haematopoietic progenitors. Nature 2017;544:105–9.
Caruso P, MacLean MR, Khanin R et al. Dynamic changes in lung microRNA profiles during the development of pulmonary hypertension due to chronic hypoxia and monocrotaline. Arterioscler Thromb Vasc Biol 2010;30:716–23.
Ho JJ, Metcalf JL, Yan MS et al. Functional importance of Dicer protein in the adaptive cellular response to hypoxia. J Biol Chem 2012;287:29003–20.
Shen J, Xia W, Khotskaya YB et al. EGFR modulates microRNA maturation in response to hypoxia through phosphorylation of AGO2. Nature 2013;497:383–7.
Li D, Ji L, Liu L et al. Characterization of circulating microRNA expression in patients with a ventricular septal defect. PLoS One 2014;9:e106318.