Potential Strategies for the Eradication of Multidrug-Resistant Gram-Negative Bacterial Infections

Future Microbiology - Tập 11 Số 7 - Trang 955-972 - 2016
Rawan Huwaitat1, Alice McCloskey1, Brendan Gilmore1, Garry Laverty1
1Biofunctional Nanomaterials Group,School of Pharmacy,Queens University of Belfast,Medical Biology Centre, 97 Lisburn Road, Belfast BT9 7BL, UK

Tóm tắt

Từ khóa


Tài liệu tham khảo

Frieden M. Antibiotic Resistance Threats In The United States (2013). www.his.org.uk/files/3713/7941/9908/Antibiotic_Resistance_Threats_in_the_United_States_2013.pdf.

O'Neill J. Vaccines And Alternative Approaches: Reducing Our Dependence On Antimicrobials (2016). http://amr-review.org/sites/default/files/Vaccines%20and%20alternatives_v4_LR.pdf.

10.1016/S1473-3099(13)70318-9

Cantóna R, Horcajadad JP, Oliver A, Garbajosaa PR, Vila J. Inappropriate use of antibiotics in hospitals: the complex relationship between antibiotic use and antimicrobial resistance. Enferm. Infecc. Microbiol. Clin. 31 (Suppl. 4 ), 3 – 11 (2013).

Health First Europe. EU Policy Recommendations on Increased Patient Safety and the Prevention of Healthcare Associated Infections (2015). http://www.healthfirsteurope.org/uploads/Modules/Newsroom/hfe-hcai-paper-08022012-print-quality-2.pdf.

UK 5 Year Antimicrobial Resistance (AMR) Strategy 2013– 2018 Annual Progress Report And Implementation Plan (2014). www.gov.uk/government/uploads/system/uploads/attachment_data/file/385733/UK_AMR_annual_report.pdf.

10.4137/PMC.S14459

10.1016/j.ijantimicag.2015.05.003

10.1155/2005/892058

Ventola CL. The antibiotic resistance crisis. Part 1: causes and threats. P T 40 (4 ), 277 – 283 (2015).

Ledford H. FDA under pressure to relax drug rules. Nature 492 (7427 ), 19 (2012).

Rigel NW, Silhavy TJ. Making a beta-barrel: assembly of outer membrane proteins in Gram-negative bacteria. Curr. Opin. Microbiol. 15 (2 ), 189 – 193 (2012).

10.1038/nrmicro3525

10.2174/138920312804871120

10.1038/nrmicro3480

10.1016/j.carres.2013.05.007

Blot N, Berrier C, Hugouvieux-Cotte-Pattat N, Ghazi A, Condemine G. The oligogalacturonate-specific porin KdgM of Erwinia chrysanthemi belongs to a new porin family. J. Biol. Chem. 277 (10 ), 7936 – 7944 (2002).

10.1016/j.bbapap.2008.11.005

Band VI, Weiss DS. Mechanisms of antimicrobial peptide resistance in Gram-negative bacteria. Antibiotics 4 (1 ), 18 – 41 (2015).

10.1128/AAC.00865-13

10.1371/journal.ppat.1002454

Dalebroux ZD, Matamouros S, Whittington D, Bishop RE, Miller SI. PhoPQ regulates acidic glycerophospholipid content of the Salmonella typhimurium outer membrane. Proc. Natl Acad. Sci. 111 (5 ), 1963 – 1968 (2014).

10.1038/nrmicro1994

Tängdén T, Adler M, Cars O, Sandegren L, Löwdin EJ. Frequent emergence of porin-deficient subpopulations with reduced carbapenem susceptibility in ESBL-producing Escherichia coli during exposure to ertapenem in an in vitro pharmacokinetic model. Antimicrob. Chemother. 68 (6 ), 1319 – 1326 (2013).

10.3389/fmicb.2015.00377

10.1016/j.bbrc.2014.05.090

10.3389/fmicb.2013.00007

10.1084/jem.70.1.1

10.3390/ph6121543

10.3390/ijms12106566

10.1007/978-1-60761-594-1_10

Park CB, Kim HS, Kim SC. Mechanism of action of the antimicrobial peptide buforin-II: buforin-II kills microorganisms by penetrating the cell membrane and inhibiting cellular functions. Biochem. Biophys. Res. Commun. 244 (1 ), 253 – 257 (1998).

Bradshaw J. Cationic antimicrobial peptides: issues for potential clinical use. Bio. Drugs 17 (4 ), 233 – 240 (2003).

Yu Z, Qin W, Lin J, Fang S, Qiu J. Antibacterial mechanisms of polymyxin and bacterial resistance. Biomed. Res. Int. 679109 (2015).

10.2217/fmb.13.39

10.1016/S1473-3099(15)00424-7

10.1016/j.mib.2010.09.002

10.3390/ijms12095971

10.4062/biomolther.2012.20.1.019

10.1128/AAC.44.12.3317-3321.2000

Kondejewski LH, Jelokhani-Niaraki M, Farmer SW et al. Dissociation of antimicrobial and hemolytic activities in cyclic peptide diastereomers by systematic alterations in amphipathicity. J. Biol. Chem. 274 (19 ), 13181 – 13192 (1999).

10.2174/092986712803251548

10.3109/03009734.2014.899279

10.1073/pnas.1409800111

10.1128/CMR.05041-11

Burgess DS. Use of pharmacokinetics and pharmacodynamics to optimize antimicrobial treatment of Pseudomonas aeruginosa infections. Clin. Infect. Dis. 40 (Suppl. 2 ), S99 – S104 (2005).

10.1126/scitranslmed.3006276

Lee W, Kim KJ, Lee DG. A novel mechanism for the antibacterial effect of silver nanoparticles on Escherichia coli. Biometals 6, 1191 – 1201 (2014).

10.2147/IJN.S55015

10.4103/0976-500X.124405

Bertheta J, Damiena P, Hamzeh-Cognassea H et al. Human platelets can discriminate between various bacterial LPS isoforms via TLR4 signaling and differential cytokine secretion. Clin. Immunol. 145 (3 ), 189 – 200 (2012).

Nikado H. Molecular basis of bacterial outer membrane permeability revisited. Microbiol. Mol. Biol. Rev. 67 (4 ), 593 – 656 (2003).

10.1016/j.mehy.2014.08.024

10.1038/srep13252

10.1007/s00018-014-1762-5

10.1042/BST0390989

10.1016/j.bpj.2008.10.044

Liu Y, Ni B, Ren JD et al. Cyclic limulus anti-lipopolysaccharide (LPS) factor-derived peptide CLP-19 antagonizes LPS function by blocking binding to LPS binding protein. Biol. Pharm. Bull. 34 (11 ), 1678 – 1683 (2011).

10.1038/nchembio.1752

10.1073/pnas.0804621105

10.1089/ars.2010.3575

10.1016/j.cell.2006.10.034

10.1111/j.1348-0421.2000.tb01244.x

10.1128/AAC.01866-13

10.3389/fmicb.2015.00660

10.1128/CMR.00117-14

Puckett SE, Reese KA, Mitev GM et al. Bacterial resistance to antisense peptide phosphorodiamidate morpholino oligomers. Antimicrob. Agents Chemother. 56 (12 ), 6147 – 6153 (2012).

Robinson R. RNAi therapeutics: how likely, how soon? PLoS Biol. 2 (1 ), e28 (2004).

10.1517/13543784.2014.930127

10.1016/S1473-3099(15)00466-1

10.1128/AAC.01695-15

10.1186/1556-276X-8-102

10.1016/j.addr.2012.09.037

10.1016/j.ejpb.2015.06.013

10.1038/nrd1632

10.1016/j.ijantimicag.2010.01.015

Elhissi AM, Ahmed W, Hassan IU, Dhanak VR, D'Emanuele A. Carbon nanotubes in cancer therapy and drug delivery. J. Drug Deliv. 837327 (2012).

10.1016/j.nantod.2014.06.003

Usui Y, Haniu H, Tsuruoka S, Saito N. Carbon nanotubes innovate on medical technology. Med. Chem. 2 (1 ), 1 – 6 (2012).

Rastogi V, Yadav P, Bhattacharya SS et al. Carbon nanotubes: an emerging drug carrier for targeting cancer cells. J. Drug Deliv. 670815 (2014).

10.1021/la802769m

10.1021/la103110g

Liu T, Tang H, Zhao J, Li D, Li R, Sun X. A study on the bactericidal properties of Cu-coated carbon nanotubes. Front. Mater. Sci. 1 (2 ), 147 – 150 (2007).

10.3390/pathogens3040791

10.1128/AAC.44.12.3317-3321.2000

10.1039/c2cs35172b

10.1038/35086601

Rodríguez-Vázquez N, Ozores HL, Guerra A et al. Membrane-targeted self-assembling cyclic peptide nanotubes. Curr. Top. Med. Chem. 14 (23 ), 2647 – 2461 (2014).

10.1007/s12250-014-3549-0

10.4161/bact.1.2.15845

10.1128/mBio.01379-14

10.4161/viru.22683