Potential Role of Serum S-100β Protein as a Predictor of Cardiotoxicity and Clinical Poor Outcome in Acute Amphetamine Intoxication
Tóm tắt
Cardio- and neurotoxicity of amphetamines play an important role in worsening morbidity, making the initial evaluation of the patient’s status a potentially lifesaving action. The current study hypothesized that the S-100β serum level could predict the severity of acute amphetamine toxicity and the in-hospital outcome. The current study is a prospective cohort study conducted on 77 patients diagnosed with acute amphetamine exposure and referred to Aseer Poison Control Center, Saudi Arabia. The patients admitted to ICU showed significantly higher serum levels of S-100β in comparison to those not admitted (p < 0.05). Moreover, the S-100β level was significantly elevated among patients with prolonged QTc intervals. Receiver-operating characteristic curve of S-100β serum level as an in-hospital outcome predictor showed that at a cutoff value > 0.430 ug/L, the sensitivity of S-100β serum level as severity predictor was 100%, and the specificity was 74.1%. In conclusion, the current study revealed that the S-100β serum level could be used as an outcome predictor in hospital admission cases due to toxic amphetamine exposure and offers an idea about the cardiac and neuronal involvement. This can help select patients who will benefit most from ICU admission and early management and assess the severity of cases in settings where GC–MS is not available.
Tài liệu tham khảo
Al-Jerani, F. M., Al-Basry, E. A., Aldawood, H., Almudhry, Z. A., Alshammari, N. M., & Busaleh, H. (2017). Substance abuse among Saudi population. International Journal of Medicine in Developing Countries, 12(4), 1174–1179. https://doi.org/10.24911/IJMDC.51-1573839276.
D’Errico, S. (2018). Commentary. Fentanyl-related death and the underreporting risk. Journal of Forensic and Legal Medicine, 60, 35–37. https://doi.org/10.1016/j.jflm.2018.09.007.
Mattiuzzi, C., & Lippi, G. (2019). Worldwide epidemiology of alcohol and drugs abuse. European Journal of Internal Medicine, 70, e27–e28.
Richards, J. R., Placone, T. W., Wang, C. G., van der Linden, M. C., Derlet, R. W., & Laurin, E. G. (2020). Methamphetamine, amphetamine, and MDMA use and emergency department recidivism. The Journal of Emergency Medicine., 59, 320–328.
Medhat, B. (2013). Substance use disorders in Saudi Arabia: Review article. Journal of Substance Use, 18, 450–466.
Almarhabi, Y., Mufti, A. I., Almaymuni, A. D., Abdurahman, T., Abdulaziz, G., Alghamdi, A. A., & Moniem Mukhtar, A. (2018). Substance abuse at early age as a potential risk factor for driving under the influence of substance in Jeddah, Saudi Arabia: A cross-sectional study. Traffic Injury Prevention, 19(7), 687–692.
Won, S., Hong, R. A., Shohet, R. V., Seto, T. B., & Parikh, N. I. (2013). Methamphetamine-associated cardiomyopathy. Clinical Cardiology, 36(12), 737–742.
Waksman, J., Taylor, R. N., Jr., Bodor, G. S., Daly, F. F. S., Jolliff, H. A., & Dart, R. C. (2001). Acute myocardial infarction associated with amphetamine use. Mayo clinic proceedings (Vol. 76, pp. 323–326). Amsterdam: Elsevier.
Paratz, E. D., Cunningham, N. J., & MacIsaac, A. I. (2016). The cardiac complications of methamphetamines. Heart, Lung and Circulation, 25(4), 325–332.
Cerretani, D., Riezzo, I., Fiaschi, A. I., Centini, F., Giorgi, G., D’Errico, S., et al. (2008). Cardiac oxidative stress determination and myocardial morphology after a single ecstasy (MDMA) administration in a rat model. International Journal of Legal Medicine, 122(6), 461–469. https://doi.org/10.1007/s00414-008-0262-2.
Boileau, I., Rusjan, P., Houle, S., Wilkins, D., Tong, J., Selby, P., et al. (2008). Increased vesicular monoamine transporter binding during early abstinence in human methamphetamine users: Is VMAT2 a stable dopamine neuron biomarker? Journal of Neuroscience, 28(39), 9850–9856.
Colado, M. I., O’shea, E., & Green, A. R. (2004). Acute and long-term effects of MDMA on cerebral dopamine biochemistry and function. Psychopharmacology (Berl), 173(3–4), 249–263.
Kevil, C. G., Goeders, N. E., Woolard, M. D., Bhuiyan, M. S., Dominic, P., Kolluru, G. K., et al. (2019). Methamphetamine use and cardiovascular disease: In search of answers. Arteriosclerosis, Thrombosis, and Vascular Biology, 39(9), 1739–1746.
Bertol, E., Bigagli, L., D’Errico, S., Mari, F., Palumbo, D., Pascali, J. P., & Vaiano, F. (2018). Analysis of illicit drugs seized in the Province of Florence from 2006 to 2016. Forensic Science International, 284, 194–203. https://doi.org/10.1016/j.forsciint.2018.01.010.
Parekh, J. D., Jani, V., Patel, U., Aggarwal, G., Thandra, A., & Arora, R. (2018). CRT-200.08 methamphetamine use is associated with increased risk of stroke and sudden cardiac death: Analysis of the nationwide inpatient sample database. JACC: Cardiovascular Interventions, 11(4), S29.
Sulzer, D., Sonders, M. S., Poulsen, N. W., & Galli, A. (2005). Mechanisms of neurotransmitter release by amphetamines: A review. Progress in Neurobiology, 75(6), 406–433.
Sekine, Y., Ouchi, Y., Takei, N., Yoshikawa, E., Nakamura, K., Futatsubashi, M., et al. (2006). Brain serotonin transporter density and aggression in abstinent methamphetamine abusers. Archives of General Psychiatry, 63(1), 90–100.
Cadet, J. L., Krasnova, I. N., Jayanthi, S., & Lyles, J. (2007). Neurotoxicity of substituted amphetamines: Molecular and cellular mechanisms. Neurotoxicity Research, 11(3–4), 183–202.
Riezzo, I., Cerretani, D., Fiore, C., Bello, S., Centini, F., D’Errico, S., et al. (2010). Enzymatic–nonenzymatic cellular antioxidant defense systems response and immunohistochemical detection of MDMA, VMAT2, HSP70, and apoptosis as biomarkers for MDMA (Ecstasy) neurotoxicity. Journal of Neuroscience Research, 88(4), 905–916.
Pomara, C., D’Errico, S., Zummo, L., Cappello, F., & Li Volti, G. (2010). MDMA administration and heat shock proteins response: Foreseeing a molecular link. Current Pharmaceutical Biotechnology, 11(5), 496–499. https://doi.org/10.2174/138920110791591445.
Kamtchum-Tatuene, J., & Jickling, G. C. (2019). Blood biomarkers for stroke diagnosis and management. NeuroMolecular Medicine. https://doi.org/10.1007/s12017-019-08530-0.
Quartuccio, S., Imbalzano, E., Trapani, G., Lizio, G., Di Salvo, E., Casciaro, M., & Gangemi, S. (2017). [OP. 3B. 02] correlation between blood levels of s100b protein and incidence of heart failure or ima in a cardiology UNIT. Journal of Hypertension, 35, e28.
Tsoporis, J. N., Mohammadzadeh, F., & Parker, T. G. (2010). Intracellular and extracellular effects of S100B in the cardiovascular response to disease. Cardiovascular Psychiatry and Neurology. https://doi.org/10.1155/2010/206073.
Imbalzano, E., Mandraffino, G., Casciaro, M., Quartuccio, S., Saitta, A., & Gangemi, S. (2016). Pathophysiological mechanism and therapeutic role of S100 proteins in cardiac failure: A systematic review. Heart Failure Reviews, 21(5), 463–473.
Tsoporis, J. N., Marks, A., Haddad, A., Dawood, F., Liu, P. P., & Parker, T. G. (2005). S100B expression modulates left ventricular remodeling after myocardial infarction in mice. Circulation, 111(5), 598–606.
Haning, W., & Goebert, D. (2007). Electrocardiographic abnormalities in methamphetamine abusers. Addiction, 102, 70–75.
Mrozek, S., Gobin, J., Constantin, J.-M., Fourcade, O., & Geeraerts, T. (2020). Crosstalk between brain, lung and heart in critical care. Anaesthesia Critical Care & Pain Medicine. https://doi.org/10.1016/j.accpm.2020.06.016.
Tsoporis, J. N., Izhar, S., Leong-Poi, H., Desjardins, J. F., Huttunen, H. J., & Parker, T. G. (2010). S100B interaction with the receptor for advanced glycation end products (RAGE): A novel receptor-mediated mechanism for myocyte apoptosis postinfarction. Circulation Research, 106(1), 93–101. https://doi.org/10.1161/CIRCRESAHA.109.195834.
Hassan, O., Abdelaleem, S., & Hamdy, L. (2018). A prospective comparative study between three chemical markers for predicting delayed neurological sequelae in patients with acute carbon monoxide poisoning of Poison Control Center in Minia University Hospital. Ain Shams Journal of Forensic Medicine and Clinical Toxicology, 31(2), 23–32.
Park, E., Ahn, J., Min, Y.-G., Jung, Y.-S., Kim, K., Lee, J., & Choi, S.-C. (2012). The usefulness of the serum s100b protein for predicting delayed neurological sequelae in acute carbon monoxide poisoning. Clinical Toxicology, 50(3), 183–188.
Williams, S. K., Lauder, M. J., & Johns, M. J. (2011). Prenatal cocaine disrupts serotonin signaling-dependent behaviors: Implications for sex differences, early stress and prenatal SSRI exposure. Current Neuropharmacology, 9(3), 478–511. https://doi.org/10.2174/157015911796557957.
Yardan, T., Cevik, Y., Donderici, O., Kavalci, C., Yilmaz, F. M., Yilmaz, G., et al. (2009). Elevated serum S100B protein and neuron-specific enolase levels in carbon monoxide poisoning. The American Journal of Emergency Medicine, 27(7), 838–842.
Cakir, Z., Aslan, S., Umudum, Z., Acemoglu, H., Akoz, A., Turkyılmaz, S., & Öztürk, N. (2010). S-100β and neuron-specific enolase levels in carbon monoxide–related brain injury. The American Journal of Emergency Medicine, 28(1), 61–67.
Shahin, M., Abuelfadl, A., & Zaki, A. (2016). The potential role of S-100β protein in evaluation of CNS affection and prediction of mortality in acute phosphides intoxication. Ain Shams Journal of Forensic Medicine and Clinical Toxicology, 26(1), 7–15. https://doi.org/10.21608/ajfm.2016.18529.
Mussack, T., Biberthaler, P., Kanz, K. G., Heckl, U., Gruber, R., Linsenmaier, U., et al. (2002). Immediate S-100B and neuron-specific enolase plasma measurements for rapid evaluation of primary brain damage in alcohol-intoxicated, minor head-injured patients. Shock, 18(5), 395–400. https://doi.org/10.1097/00024382-200211000-00002.
Wako, E., LeDoux, D., Mitsumori, L., & Aldea, G. S. (2007). The emerging epidemic of methamphetamine-induced aortic dissections. Journal of Cardiac Surgery, 22(5), 390–393.
Bassiony, M. (2013). Substance use disorders in Saudi Arabia: Review article. Journal of Substance Use, 18(6), 450–466. https://doi.org/10.3109/14659891.2011.606349.
Persson, H. E., Sjöberg, G. K., Haines, J. A., & De Garbino, J. P. (1998). Poisoning severity score. Grading of acute poisoning. Journal of Toxicology - Clinical Toxicology, 36(3), 205–213. https://doi.org/10.3109/15563659809028940.
Pongpiachan, S., Hirunyatrakul, P., Kittikoon, I., & Khumsup, C. (2012). Parameters influencing on sensitivities of polycyclic aromatic hydrocarbons measured by Shimadzu GCMS-QP2010 ultra. Advanced gas chromatography-progress in agricultural, biomedical and industrial applications. London: InTech.
Swortwood, M. J. (2013). Comprehensive forensic toxicological analysis of designer drugs. Florida International University FIU Digital Commons. https://doi.org/10.25148/etd.FI13120611.
Undén, J., & Romner, B. (2009). A new objective method for CT triage after minor head injury–serum S100B. Scandinavian Journal of Clinical and Laboratory Investigation, 69(1), 13–17.
Hancock, E. W., Deal, B. J., Mirvis, D. M., Okin, P., Kligfield, P., & Gettes, L. S. (2009). AHA/ACCF/HRS recommendations for the standardization and interpretation of the electrocardiogram: Part V: electrocardiogram changes associated with cardiac chamber hypertrophy a scientific statement from the American Heart Association Electrocardiography. Journal of the American College of Cardiology, 53(11), 992–1002.
Karjalainen, J., Viitasalo, M., Mänttäri, M., & Manninen, V. (1994). Relation between QT intervals and heart rates from 40 to 120 beats/min in rest electrocardiograms of men and a simple method to adjust QT interval values. Journal of the American College of Cardiology, 23(7), 1547–1553.
Heemskerk, C. P. M., Pereboom, M., van Stralen, K., Berger, F. A., van den Bemt, P. M. L. A., Kuijper, A. F. M., et al. (2018). Risk factors for QTc interval prolongation. European Journal of Clinical Pharmacology, 74(2), 183–191.
Stehlik-Barry, K., & Babinec, A. J. (2017). Data analysis with IBM SPSS statistics. Birmingham: Packt Publishing Ltd.
Wiesmann, M., Missler, U., Gottmann, D., & Gehring, S. (1998). Plasma S-100b protein concentration in healthy adults is age-and sex-independent. Clinical chemistry, 44(5), 1056–1058.
Hosmer, D. W., Jr., Lemeshow, S., & Sturdivant, R. X. (2013). Applied logistic regression (Vol. 398). Hoboken: Wiley.
Al-Musa, H. M., & Al-Montashri, S. D. S. (2016). Substance abuse among male secondary school students in Abha city, Saudi Arabia: Prevalence and associated factors. Biomedical Research (India), 27(4), 1364–1373.
Matis, G., & Birbilis, T. (2008). The Glasgow Coma Scale–a brief review past, present, future. Acta Neurologica Belgica, 108(3), 75–89.
Sam, K. G., Kondabolu, K., Pati, D., Kamath, A., Pradeep Kumar, G., & Rao, P. G. M. (2009). Poisoning severity score, APACHE II and GCS: Effective clinical indices for estimating severity and predicting outcome of acute organophosphorus and carbamate poisoning. Journal of Forensic and Legal Medicine, 16(5), 239–247. https://doi.org/10.1016/j.jflm.2008.12.004.
Persson, H., Sjoberg, G., Haines, J., & Garbino, J. (1998). Poisoning severity score. Clinical Toxicology, 6(3), 205–213. https://doi.org/10.3109/15563659809028940.
Alghamdi, M., Alqahtani, B., & Alhowti, S. (2016). Cardiovascular complications among individuals with amphetamine-positive urine drug screening admitted to a tertiary care hospital in Riyadh. Journal of the Saudi Heart Association, 28(3), 129–135.
Bazmi, E., Mousavi, F., Giahchin, L., Mokhtari, T., & Behnoush, B. (2017). Cardiovascular complications of acute amphetamine abuse: Cross-sectional study. Sultan Qaboos University Medical Journal, 17(1), e31–e37. https://doi.org/10.18295/squmj.2016.17.01.007.
Jones, A. W., & Holmgren, A. (2013). Amphetamine abuse in Sweden: Subject demographics, changes in blood concentrations over time, and the types of coingested substances. Journal of Clinical Psychopharmacology, 33(2), 248–252.
Curtin, K., Fleckenstein, A. E., Robison, R. J., Crookston, M. J., Smith, K. R., & Hanson, G. R. (2015). Methamphetamine/amphetamine abuse and risk of Parkinson’s disease in Utah: A population-based assessment. Drug and Alcohol Dependence, 146, 30–38.
Rahimi, M., Lookzadeh, S., Sadeghi, R., Soltaninejad, K., Shadnia, S., Pajoumand, A., et al. (2018). Predictive factors of mortality in acute amphetamine type stimulants poisoning; a review of 226 cases. Emergency (Tehran, Iran), 6(1), e1. https://doi.org/10.22037/emergency.v6i1.18137.
Dargan, P. I., & Wood, D. M. (2008). Comparison of crystalline methamphetamine (“ice”) users and other patients with toxicology-related problems presenting to a hospital emergency department. Medical Journal of Australia, 189(4), 234. https://doi.org/10.5694/j.1326-5377.2008.tb01996.x.
Kelly, T. H., Robbins, G., Martin, C. A., Fillmore, M. T., Lane, S. D., Harrington, N. G., & Rush, C. R. (2006). Individual differences in drug abuse vulnerability: D-amphetamine and sensation-seeking status. Psychopharmacology (Berl), 189(1), 17–25. https://doi.org/10.1007/s00213-006-0487-z.
Gray, S. D., Fatovich, D. M., McCoubrie, D. L., & Daly, F. F. (2007). Amphetamine-related presentations to an inner-city tertiary emergency department: A prospective evaluation. Medical Journal of Australia, 186(7), 336–339.
Li, H.-T., Liu, H., Gao, X.-S., & Zhang, H. (2009). Knock-out of Arabidopsis AtNHX4 gene enhances tolerance to salt stress. Biochemical and Biophysical Research Communications, 382(3), 637–641.
Němec, J., Kim, J. J., & Salama, G. (2016). The link between abnormal calcium handling and electrical instability in acquired long QT syndrome–does calcium precipitate arrhythmic storms? Progress in Biophysics and Molecular Biology, 120(1–3), 210–221.
Missler, U., Orlowski, N., Nötzold, A., Dibbelt, L., Steinmeier, E., & Wiesmann, M. (2002). Early elevation of S-100B protein in blood after cardiac surgery is not a predictor of ischemic cerebral injury. Clinica Chimica Acta, 321(1–2), 29–33. https://doi.org/10.1016/S0009-8981(02)00061-X.
Devkota, A. R., Dufrense, A., & Parajuli, P. (2015). Acute reversible cardiomyopathy due to methamphetamine overdose. British Journal of Medical Practitioners, 8(4), 32–34.
Parker, T. G., Tsoporis, J. N., & Mohammadzadeh, F. (2010). Intracellular and extracellular effects of S100B in the cardiovascular response to disease. Cardiovascular Psychiatry and Neurology. https://doi.org/10.1155/2010/206073.
Kaye, S., McKetin, R., Duflou, J., & Darke, S. (2007). Methamphetamine and cardiovascular pathology: A review of the evidence. Addiction, 102(8), 1204–1211.
Chih-Sung, L., & Yao-Chin, H. (2013). Methamphetamine-associated QTc prolongation in a dose-dependent and reversible manner. Journal of Neuropsychiatry and Clinical Neurosciences, 25(2), 2013. https://doi.org/10.1176/appi.neuropsych.12050133.
Holmwood, C., & Gowing, L. (2017). Acute presentations related to methamphetamine use. Clinical Guideline for Adults and Adolescents, 10–21.
Yang, Y., & Rosenberg, G. A. (2011). Blood–brain barrier breakdown in acute and chronic cerebrovascular disease. Stroke, 42(11), 3323–3328.
Brvar, M., Možina, H., Osredkar, J., Možina, M., Noč, M., Bručan, A., & Bunc, M. (2004). S100B protein in carbon monoxide poisoning: A pilot study. Resuscitation, 61(3), 357–360.
Degenhardt, L., Coffey, C., Moran, P., Carlin, J. B., & Patton, G. C. (2007). The predictors and consequences of adolescent amphetamine use: Findings from the Victoria Adolescent Health Cohort Study. Addiction, 102(7), 1076–1084. https://doi.org/10.1111/j.1360-0443.2007.01839.x.
Hayatbakhsh, M. R., Najman, J. M., Bor, W., & Williams, G. M. (2009). Predictors of young adults’ amphetamine use and disorders: A prospective study. Drug and Alcohol Review, 28(3), 275–283. https://doi.org/10.1111/j.1465-3362.2009.00032.x.
Anderson, R. E., Hansson, L. O., Nilsson, O., Liska, J., Settergren, G., & Vaage, J. (2001). Increase in serum S100A1-B and S100BB during cardiac surgery arises from extracerebral sources. Annals of Thoracic Surgery, 71(5), 1512–1517. https://doi.org/10.1016/S0003-4975(01)02399-2.
Faa, A., Senes, G., Locci, A., Pampaloni, P., Pais, M. E., Piras, B., et al. (2012). S100B protein expression in the heart of deceased individuals by overdose: A new forensic marker? Clinics, 67(7), 821–826.
Jafari Giv, M. (2017). Exposure to amphetamines leads to development of amphetamine type stimulants associated cardiomyopathy (ATSAC). Cardiovascular Toxicology, 17(1), 13–24. https://doi.org/10.1007/s12012-016-9385-8.