Potential Antiperovskite Semiconductor Compounds Mg3XN (X = P, As, Sb, Bi): the First-Principles Study

Springer Science and Business Media LLC - Tập 35 - Trang 3277-3290 - 2022
Zhong-yue Gao1, Wei Wang1, Bo-chen Li1, Lei Sun1, Feng Wang2
1School of Science, Shenyang University of Technology, Shenyang, China
2School of Materials Science and Engineering, Shenyang University of Technology, Shenyang, China

Tóm tắt

In this work, the antiperovskite semiconductor compounds Mg3XN (X = P, As, Sb, Bi) are investigated using the first-principles calculations. The structural, electronic, optical, and elastic properties of the Mg3XN compounds are studied in detail. Meanwhile, the magnetism is introduced by doping Mn element in Mg3XN compounds. Mg3XN compounds are semiconductors with direct band gap from the analysis of electronic properties. In addition, the values of band gap decrease with the increasing of atomic number of X atoms. The results of elastic parameters show that the values of bulk (91.27 GPa) and shear (76.14 GPa) modulus of Mg3PN are the largest in the Mg3XN compounds. For the velocity of sound in different directions of Mg3XN compounds, the Mg3PN has the maximum average velocity of sound, which implies that the bonding strength of Mg3PN is at maximum. Moreover, the changes of bulk modulus, shear modulus, and Young’s modulus under different pressure are explored. By substituting Mg atoms with Mn atoms, the chemical formula of Mg3XN compounds is updated to Mg2.5Mn0.5XN. The conclusions of the formation enthalpy and magnetic properties of Mg2.5Mn0.5XN compounds confirm that the possibility of Mg3XN compounds becomes photovoltaic materials. We hope that the present work can provide some reference for the application of Mg3XN compounds.

Tài liệu tham khảo

Ali, R., Hou, G.J., Zhu, Z.G.: Chem. Mater. 30, 718 (2018) Wang, Y.G., Zhang, H., Zhu, J.L.: Adv. Mater. 32, 1905007 (2019) Chern, M.Y., Vennos, D.A., Disalvo, F.J.: J. Solid State Chem. 96, 415 (1992) Arca, E., Lany, S., Perkins, J.: J. Am. Chem. Soc. 140, 4293 (2018) Tan, S.G., Gao, C.H., Yuan, H., Wu, J.P., Wang, C.: J. Solid State Chem. 302, 122389 (2021) Stoiber, D., Niewa, R.: Z. Anorg. Allg. Chem. 645, 329 (2019) Nuss, J., Mühle, C., Hayama, K.: Acta Cryst. B 71, 300 (2015) Gäbler, F., Kirchner, M., Schnelle, W.: Z. Anorg. Allg. Chem. 630, 2292 (2004) Sun, Y., Chen, X.Q., Yunoki, S.: Phys. Rev. Lett. 105, 216406 (2010) Goh, W.F., Pickett, W.E.: Phys. Rev. B 98, 125147 (2018) Ma, H., Zhang, X.D., Wang, F.: Vacuum 191, 110410 (2021) Krimi, Y.E., Masrour, R., Jabar, A.: J. Mol. Graph. Model. 114, 108165 (2022) Pan, Y., Jing, C.: Ceram. Int. 45, 21373 (2019) Pan, Y.: Int. J. Hydrogen Energy 44, 18153 (2019) Dai, J., Ju, M.G., Ma, L., Zeng, X.C.: J. Phys. Chem. C 123, 6363 (2019) Chaouche, Y.: Bull. Mater. Sci. 44, 111 (2021) Chi, E.O., Kim, W.S., Hur, N.H., Jung, D.: Solid State Commun. 121, 309 (2002) Heinselman, K.N., Lany, S., Perkins, J.D., Talley, K.R.: Chem. Mater. 31, 8717 (2019) Sreedevi, P.D., Ravindran, P., Vidy, R.: Materials Today: Proceedings 8, 294 (2019) Mochizuki, Y., Sung, H.J., Takahashi, A.: Phys. Rev. Mater. 4, 044601 (2020) Rani, U., Kamlesh, P.K., Shukla, A., Verma, A.S.: J. Solid State Chem. 300, 122246 (2021) Amara, K., Zemouli, M., Elkeurti, M.: J. Alloy. Compd. 576, 398 (2013) Segall, M.D., Lindan, P.J.D., Probert, M.J.: J. Phys. Condens. Matter 14, 2717 (2002) Zhong, H.X., Feng, C.B., Wang, H.: Appl. Mater. Interfaces 13, 48516 (2021) Bilal, M., Ahmad, I., Aliabad, H.A.R., Asadabadi, S.J.: Comput. Mater. Sci. 85, 310 (2014) Shein, I.R., Ivanovskii, A.L.: J. Solid State Chem. 177, 61 (2004) Khandy, S.A., Islam, I., Kaur, K.: Results Phys. 17, 103112 (2020) Voigt, W.: Ann. Phys. Chem. 274, 573 (1889) Reuss, A.: ZAMM-Z Angew. Math. Me. 9, 49 (1929) Rani, U., Soni, Y., Kamlesh, P.K.: Int. J. Energy Res. 45, 13442 (2021) Wang, J.F., Fu, X.N., Wang, J.T.: Chin. Phys. B 26, 106301 (2017) Kuma, S., Woldemariam, M.M.: Adv. Condens. Matter Phys. 2019, 3176148 (2019) Sun, Z., Li, S., Ahuja, R., Schneider, J.M.: Solid State Commun. 129, 589 (2004) Pugh, S.F.: Philos. Mag. 45, 823 (1954) Medkour, Y., Roumili, A., Maouche, D.: J. Alloy. Compd. 541, 75 (2012) Vaitheeswaran, G., Kanchana, V., Svane, A., Delin, A.: J. Phys. Condens. Matter 19, 326214 (2007) Vaitheeswaran, G., Kanchana, V., Kumar, R.S.: Phys. Rev. B 76, 014107 (2007) Sattar, M.A., Benkraouda, M., Amrane, N.: Physica E 118, 113885 (2020) Atanelov, J., Mohn, P.: Comput. Mater. Sci. 117, 380 (2016) GolafroozShahri, S., Roknabadi, M.R., Shahtahmasebi, N., Behdani, M.: J. Magn. Magn. Mater. 420, 56 (2016) Pushpa, R., Daniel, D., Butt, D.P.: Solid State Ionics 249, 184 (2013) Bai, A.M., Zhao, S.F., Chen, J.Y.: J. Nanomater. 2014, 509408 (2014) Park, J.H., Lee, Y.A., Lee, J.H., Yoon, H.: J. Asian. Ceram. Soc. 8, 519 (2020) Marugata, S., Kagi, H., Ijichi, Y.: J. Solid. State. Chem. 312, 123258 (2022) Shi, K.W., Sun, Y., Colin, C.V.: Phys. Rev. B 97, 054110 (2018)