Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Sự Kích Thích Của Kali Đối Với Vận Chuyển IAA Do Đơn Vị Nhập Khẩu AUX1 Của Arabidopsis Thực Hiện Được Nghiên Cứu Trong Một Hệ Thống Nấm Nước Ngoài
Tóm tắt
Auxin điều chỉnh nhiều quá trình liên quan đến sự phát triển và sinh trưởng của thực vật. AUX1 là đơn vị nhập khẩu auxin đầu tiên được xác định và được nghiên cứu rộng rãi nhất, đóng vai trò quan trọng trong sự hướng rễ theo trọng lực và sự phát triển của rễ bên và lông rễ. Tuy nhiên, cơ chế điều chỉnh vận chuyển auxin của AUX1 vẫn chưa được hiểu rõ. Trong nghiên cứu này, chúng tôi đã xem xét ảnh hưởng của các ion kim loại đến chức năng vận chuyển của AUX1 và phát hiện rằng hoạt động của nó có thể được kích thích đặc hiệu gấp bốn lần bởi K+. Các thí nghiệm tiếp theo đã tiết lộ sự ưu tiên của KF trong việc nâng cao hoạt động vận chuyển của AUX1 so với KCl, KBr và KI. Ngoài ra, sự tương tác giữa K+ và AUX1 khiến AUX1 chịu nhiệt tốt hơn nhưng dễ bị phân hủy bởi protease. Sửa đổi hóa học thông thường cho thấy rằng các axit amin acid bên ngoài của AUX1 đóng một vai trò then chốt trong sự kích thích K+. Quá trình đột biến tại chỗ cho thấy rằng việc thay thế Asp166, Asp293, và Asp312 của AUX1 bằng alanine làm suy giảm khả năng vận chuyển auxin được kích thích bởi K+. Ngược lại, khi các dư lượng này bị đột biến thành glutamate, lysine, hoặc asparagine, chỉ có biến thể D312E phục hồi hoạt động vận chuyển IAA về mức gần với kiểu hoang dã. Do đó, chúng tôi tin rằng D312 có thể là dư lượng hứa hẹn nhất cho sự kích thích của K+ lên AUX1.
Từ khóa
#Auxin #AUX1 #vận chuyển auxin #ion kim loại #kích thích K+Tài liệu tham khảo
Belogurov GA, Lahti R (2002) A lysine substitute for K+. A460 K mutation eliminates K+ dependence in H+-pyrophosphatase of Carboxydothermus hydrogenoformans. J Biol Chem 277:49651–49654. https://doi.org/10.1074/jbc.M210341200
Carden DE, Walker DJ, Flowers TJ, Miller AJ (2003) Single-cell measurements of the contributions of cytosolic Na+ and K+ to salt tolerance. Plant Physiol 131:676–683. https://doi.org/10.1104/pp.011445
Carrier DJ, Abu Bakar NT, Lawler K, Dorrian JM, Haider A, Bennett MJ, Kerr ID (2009) Heterologous expression of a membrane-spanning auxin importer: implications for functional analyses of auxin transporters. Int J Plant Genomics 2009:848145. https://doi.org/10.1155/2009/848145
Chiu FS, Hsu SH, Chen JH, Hsiao YY, Pan YJ, Van RC, Huang YT, Tseng FG, Chou WM, Fan SK, Pan RL (2006) Differential response of vacuolar proton pumps to osmotica. Funct Plant Biol 33(2):195–206. https://doi.org/10.1071/FP03248
de Billy F, Grosjean C, May S, Bennett M, Cullimore JV (2001) Expression studies on AUX1-like genes in Medicago truncatula suggest that auxin is required at two steps in early nodule development. Mol Plant Microbe Interact 14:267–277. https://doi.org/10.1094/MPMI.2001.14.3.267
Forestan C, Varotto S (2012) The role of PIN auxin efflux carriers in polar auxin transport and accumulation and their effect on shaping maize development. Mol Plant 5:787–798. https://doi.org/10.1093/mp/ssr103
Friml J, Palme K (2002) Polar auxin transport–old questions and new concepts? Plant Mol Biol 49:273–284
Giehl RF, Lima JE, von Wiren N (2012) Localized iron supply triggers lateral root elongation in Arabidopsis by altering the AUX1-mediated auxin distribution. Plant Cell 24:33–49. https://doi.org/10.1105/tpc.111.092973
Guilfoyle TJ, Hagen G (2007) Auxin response factors. Curr Opin Plant Biol 10:453–460. https://doi.org/10.1016/j.pbi.2007.08.014
Hasenstein KH, Rayle D (1984) Cell wall pH and auxin transport velocity. Plant Physiol 76:65–67
Inoue SI, Takahashi K, Okumura-Noda H, Kinoshita T (2016) Auxin influx carrier AUX1 confers acid resistance for Arabidopsis root elongation through the regulation of plasma membrane H+-ATPase. Plant Cell Physiol 57:2194–2201. https://doi.org/10.1093/pcp/pcw136
Kharshiing EV, Kumar GP, Sharma R (2010) PIN it on auxin: the role of PIN1 and PAT in tomato development. Plant Signal Behav 5:1379–1383
Komoszynski M, Bandurski RS (1986) Transport and metabolism of indole-3-acetyl-myo-inositol-galactoside in seedlings of Zea mays. Plant Physiol 80:961–964
Kramer EM (2004) PIN and AUX/LAX proteins: their role in auxin accumulation. Trends Plant Sci 9:578–582. https://doi.org/10.1016/j.tplants.2004.10.010
Laemmli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
Li PF, Merz KM (2017) Metal ion modeling using classical mechanics. Chem Rev 117:1564–1686. https://doi.org/10.1021/acs.chemrev.6b00440
Li B, Li Q, Su Y, Chen H, Xiong L, Mi G, Kronzucker HJ, Shi W (2011) Shoot-supplied ammonium targets the root auxin influx carrier AUX1 and inhibits lateral root emergence in Arabidopsis. Plant Cell Environ 34:933–946. https://doi.org/10.1111/j.1365-3040.2011.02295.x
Li SB, Xie ZZ, Hu CG, Zhang JZ (2016) A review of auxin response factors (arfs) in plants. Front Plant Sci 7:47. https://doi.org/10.3389/fpls.2016.00047
Li J, Wu WH, Wang Y (2017) Potassium channel AKT1 is involved in the auxin-mediated root growth inhibition in Arabidopsis response to low K+ stress. J Integr Plant Biol 59:895–909. https://doi.org/10.1111/jipb.12575
Lin SM, Tsai JY, Hsiao CD, Huang YT, Chiu CL, Liu MH, Tung JY, Liu TH, Pan RL, Sun YJ (2012) Crystal structure of a membrane-embedded H+-translocating pyrophosphatase. Nature 484:399–403. https://doi.org/10.1038/nature10963
Liu ZH, Yu YC, Xiang FN (2011) Auxin response factors and plant growth and development. Yi Chuan 33:1335–1346
Marchant A, Bennett MJ (1996) Arabidopsis AUX1 gene: a permease-like regulator of root gravitropism. Science 273:948–950
Marchant A, Kargul J, May ST, Muller P, Delbarre A, Perrot-Rechenmann C, Bennett MJ (1999) AUX1 regulates root gravitropism in Arabidopsis by facilitating auxin uptake within root apical tissues. EMBO J 18:2066–2073. https://doi.org/10.1093/emboj/18.8.2066
Michniewicz M, Brewer PB, Friml JI (2007) Polar auxin transport and asymmetric auxin distribution. Arabidopsis Book 5:e0108. https://doi.org/10.1199/tab.0108
Morris DA (2000) Transmembrane auxin carrier systems–dynamic regulators of polar auxin transport. Plant Growth Regul 32:161–172
Muday GK, DeLong A (2001) Polar auxin transport: controlling where and how much. Trends Plant Sci 6:535–542
Muhling KH, Lauchli A (2000) Light-induced pH and K+ changes in the apoplast of intact leaves. Planta 212:9–15. https://doi.org/10.1007/s004250000374
Padilla IM, Vidoy I, Encina CL (2009) Influence of indole-butyric acid and electro-pulse on in vitro rooting and development of olive (Olea europea L.) microshoots. Plant Cell Rep 28:1411–1420. https://doi.org/10.1007/s00299-009-0740-0
Page MJ, Di Cera E (2006) Role of Na+ and K+ in enzyme function. Physiol Rev 86:1049–1092. https://doi.org/10.1152/physrev.00008.2006
Peer WA, Blakeslee JJ, Yang HB, Murphy AS (2011) Seven things we think we know about auxin transport. Mol Plant 4:487–504. https://doi.org/10.1093/mp/ssr034
Pilot G, Gaymard F, Mouline K, Cherel I, Sentenac H (2003) Regulated expression of Arabidopsis shaker K+ channel genes involved in K+ uptake and distribution in the plant. Plant Mol Biol 51:773–787
Qi D, Scholthof KB (2008) A one-step PCR-based method for rapid and efficient site-directed fragment deletion, insertion, and substitution mutagenesis. J Virol Methods 149:85–90. https://doi.org/10.1016/j.jviromet.2008.01.002
Roy S, Robson F, Lilley J, Liu CW, Cheng X, Wen J, Walker S, Sun J, Cousins D, Bone C, Bennett MJ, Downie JA, Swarup R, Oldroyd G, Murray JD (2017) MtLAX2, a functional homologue of the Arabidopsis auxin influx transporter aux1, is required for nodule organogenesis. Plant Physiol 174:326–338. https://doi.org/10.1104/pp.16.01473
Simon S, Petrasek J (2011) Why plants need more than one type of auxin. Plant Sci 180:454–460. https://doi.org/10.1016/j.plantsci.2010.12.007
Street IH, Mathews DE, Yamburkenko MV, Sorooshzadeh A, John RT, Swarup R, Bennett MJ, Kieber JJ, Schaller GE (2016) Cytokinin acts through the auxin influx carrier AUX1 to regulate cell elongation in the root. Development 143:3982–3993. https://doi.org/10.1242/dev.132035
Sugawara S, Mashiguchi K, Tanaka K, Hishiyama S, Sakai T, Hanada K, Kinoshita-Tsujimura K, Yu H, Dai X, Takebayashi Y, Takeda-Kamiya N, Kakimoto T, Kawaide H, Natsume M, Estelle M, Zhao Y, Hayashi K, Kamiya Y, Kasahara H (2015) Distinct characteristics of indole-3-acetic acid and phenylacetic acid, two common auxins in plants. Plant Cell Physiol 56:1641–1654. https://doi.org/10.1093/pcp/pcv088
Swarup R, Peret B (2012) AUX/LAX family of auxin influx carriers-an overview. Front Plant Sci 3:225. https://doi.org/10.3389/fpls.2012.00225
Swarup R, Friml J, Marchant A, Ljung K, Sandberg G, Palme K, Bennett M (2001) Localization of the auxin permease AUX1 suggests two functionally distinct hormone transport pathways operate in the Arabidopsis root apex. Genes Dev 15:2648–2653. https://doi.org/10.1101/gad.210501
Timpte C, Lincoln C, Pickett FB, Turner J, Estelle M (1995) The AXR1 and AUX1 genes of Arabidopsis function in separate auxin-response pathways. Plant J 8:561–569
Ugartechea-Chirino Y, Swarup R, Swarup K, Peret B, Whitworth M, Bennett M, Bougourd S (2010) The AUX1 LAX family of auxin influx carriers is required for the establishment of embryonic root cell organization in Arabidopsis thaliana. Ann Bot 105:277–289. https://doi.org/10.1093/aob/mcp287
Ulmasov T, Hagen G, Guilfoyle TJ (1999) Dimerization and DNA binding of auxin response factors. Plant J 19:309–319
Wang SW, Toda T, MacCallum R, Harris AL, Norbury C (2000) Cid1, a fission yeast protein required for S-M checkpoint control when DNA polymerase delta or epsilon is inactivated. Mol Cell Biol 20:3234–3244
Yang H, Murphy AS (2009) Functional expression and characterization of Arabidopsis ABCB, AUX 1 and PIN auxin transporters in Schizosaccharomyces pombe. Plant J 59:179–191. https://doi.org/10.1111/j.1365-313X.2009.03856.x
Yang YD, Hammes UZ, Taylor CG, Schachtman DP, Nielsen E (2006) High-affinity auxin transport by the AUX1 influx carrier protein. Curr Biol 16:1123–1127. https://doi.org/10.1016/j.cub.2006.04.029
Zhao Y (2010) Auxin biosynthesis and its role in plant development. Annu Rev Plant Biol 61:49–64. https://doi.org/10.1146/annurev-arplant-042809-112308
