Postprandial kinetics of gene expression of proteins involved in the digestive process in rainbow trout (O. mykiss) and impact of diet composition

Fish Physiology and Biochemistry - Tập 42 - Trang 1187-1202 - 2016
Marion Borey1,2, Stephane Panserat1, Anne Surget1, Marianne Cluzeaud1, Elisabeth Plagnes-Juan1, Alexandre Herman1, Viviana Lazzarotto1, Geneviève Corraze1, Françoise Médale1, Beatrice Lauga2, Christine Burel1
1UMR1419 Nutrition, Métabolisme, Aquaculture, INRA, Saint Pee sur Nivelle, France
2EEM, UMR 5254 IPREM, Equipe Environnement et Microbiologie, Université de Pau et des Pays de l’Adour, Pau, France

Tóm tắt

The impact of increased incorporation of plant ingredients on diets for rainbow trout was evaluated in terms of gene expression of gastric (gastric lipase, pepsinogen) and intestinal (prolidase, maltase, phospholipase A2) digestive enzymes and nutrient transporters (peptide and glucose transporters), as well as of postprandial levels of plasma glucose, triglycerides and total free amino acids. For that purpose, trout alevins were fed from the start of exogenous feeding one of three different experimental diets: a diet rich in fish meal and fish oil (FM–FO), a plant-based diet (noFM–noFO) totally free from fish meal and fish oil, but containing plant ingredients and a Mixed diet (Mixed) intermediate between the FM–FO and noFM–noFO diets. After 16 months of rearing, all fish were left unfed for 72 h and then given a single meal to satiation. Blood, stomach and anterior intestine were sampled before the meal and at 2, 6 and 12 h after this meal. The postprandial kinetics of gene expression of gastric and intestinal digestive enzymes and nutrient transporters were then followed in trout fed the FM–FO diet. The postprandial profiles showed that the expression of almost all genes studied was stimulated by the presence of nutrients in the digestive tract of trout, but the timing (appearance of peaks) varied between genes. Based on these data, we have focused on the molecular response to dietary factors in the stomach and the intestine at 6 and 12 h after feeding, respectively. The reduction in FM and FO levels of dietary incorporation induced a significant decrease in the gene expression of gastric lipase, GLUT2 and PEPT1. The plasma glucose and triglycerides levels were also reduced in trout fed the noFM–noFO diet. Consequently, the present study suggests a decrease in digestive capacities in trout fed a diet rich in plant ingredients.

Tài liệu tham khảo

Azarm HM, Kenari AA, Hedayati M (2013) Effect of dietary phospholipid sources and levels on growth performance, Enzymes activity, Cholecystokinin and lipoprotein fractions of rainbow trout (Oncorhynchus mykiss) fry. Aquac Res 44:634–644. doi:10.1111/j.1365-2109.2011.03068.x Azodi M, Ebrahimi E, Motaghi E, Morshedi V (2015) Metabolic responses to short starvation and re-feeding in rainbow trout (Oncorhynchus mykiss). Ichthyol Res 62:177–183. doi:10.1007/s10228-014-0421-z Basque JR, Ménard D (2000) Establishment of culture systems of human gastric epithelium for the study of pepsinogen and gastric lipase synthesis and secretion. Microsc Res Tech 48:293–302. doi:10.1002/(SICI)1097-0029(20000301)48:5<293:AID-JEMT6>3.0.CO;2-A Borovicka J, Schwizer W, Guttmann G et al (2000) Role of lipase in the regulation of postprandial gastric acid secretion and emptying of fat in humans: a study with orlistat, a highly specific lipase inhibitor. Gut 46:774–781. doi:10.1136/gut.46.6.774 Bucking C, Wood CM (2006) Water dynamics in the digestive tract of the freshwater rainbow trout during the processing of a single meal. J Exp Biol 209:1883–1893. doi:10.1242/jeb.02205 Caballero M, Obach A, Rosenlund G et al (2002) Impact of different dietary lipid sources on growth, lipid digestibility, tissue fatty acid composition and histology of rainbow trout, Oncorhynchus mykiss. Aquaculture 214:253–271. doi:10.1016/S0044-8486(01)00852-3 Castro C, Couto A, Pérez-Jiménez A et al (2016) Effects of fish oil replacement by vegetable oil blend on digestive enzymes and tissue histomorphology of European sea bass (Dicentrarchus labrax) juveniles. Fish Physiol Biochem 42(1):203–217. doi:10.1007/s10695-015-0130-1 Coutteau P, Geurden I, Camara MR et al (1997) Review on the dietary effects of phospholipids in fish and crustacean larviculture. Aquaculture 155:149–164. doi:10.1016/S0044-8486(97)00125-7 Dabrowski K, Dabrowska H (1981) Digestion of protein by rainbow trout (Salmo gairdneri Rich.) and absorption of amino acids within the alimentary tract. Comp Biochem Physiol Part A Physiol 69:99–111. doi:10.1016/0300-9629(81)90643-5 Fauconneau B, Choubert G, Blanc D et al (1983) Influence of environmental temperature on flow rate of foodstuffs through the gastrointestinal tract of rainbow trout. Aquaculture 34:27–39 Ferraris RP, Ahearn G (1984) Sugar and amino acid transport in fish intestine. Comp Biochem Physiol Part A Physiol 77:397–413. doi:10.1016/0300-9629(84)90204-4 Geurden I, Aramendi M, Zambonino-Infante JL, Panserat S (2007) Early feeding of carnivorous rainbow trout (Oncorhynchus mykiss) with a hyperglucidic diet during a short period: effect on dietary glucose utilization in juveniles. Am J Physiol Regul Integr Comp Physiol 292:R2275–R2283. doi:10.1152/ajpregu.00444.2006 Geurden I, Borchert P, Balasubramanian MN et al (2013) The positive impact of the early-feeding of a plant-based diet on its future acceptance and utilisation in rainbow trout. PLoS ONE. doi:10.1371/journal.pone.0083162 Geurden I, Mennigen J, Plagnes-Juan E et al (2014) High or low dietary carbohydrate:protein ratios during first-feeding affect glucose metabolism and intestinal microbiota in juvenile rainbow trout. J Exp Biol 217(19):3396–3406 Glencross B, Evans D, Rutherford N et al (2006) The influence of the dietary inclusion of the alkaloid gramine, on rainbow trout (Oncorhynchus mykiss) growth, feed utilisation and gastrointestinal histology. Aquaculture 253:512–522. doi:10.1016/j.aquaculture.2005.07.009 Gómez-Requeni P, Calduch-Giner J, Vega-Rubín de Celis S et al (2005) Regulation of the somatotropic axis by dietary factors in rainbow trout (Oncorhynchus mykiss). Br J Nutr 94:353–361. doi:10.1079/BJN20051521 Heckmann L-H, Sørensen PB, Krogh PH, Sørensen JG (2011) NORMA-Gene: a simple and robust method for qPCR normalization based on target gene data. BMC Bioinf 12:250–257. http://www.biomedcentral.com/1471-2105/12/250 Hua K, Bureau D (2012) Exploring the possibility of quantifying the effects of plant protein ingredients in fish feeds using meta-analysis and nutritional model simulation-based approaches. Aquaculture 356–357:284–301. doi:10.1016/j.aquaculture.2012.05.003 Ingham L, Arme C (1977) Intestinal absorption of amino acids by rainbow trout, Salmo gairdneri (Richardson). J Comp Physiol B 117:323–334. doi:10.1007/BF00691558 Kamalam BS, Panserat S, Aguirre P et al (2013) Selection for high muscle fat in rainbow trout induces potentially higher chylomicron synthesis and PUFA biosynthesis in the intestine. Comp Biochem Physiol A: Mol Integr Physiol 164:417–427. doi:10.1016/j.cbpa.2012.11.020 Kirchner S, Panserat S, Lim PL et al (2008) The role of hepatic, renal and intestinal gluconeogenic enzymes in glucose homeostasis of juvenile rainbow trout. J Comp Physiol B Biochem Syst Environ Physiol 178:429–438. doi:10.1007/s00360-007-0235-7 Larsen BK, Dalsgaard J, Pedersen PB (2012) Effects of plant proteins on postprandial, free plasma amino acid concentrations in rainbow trout (Oncorhynchus mykiss). Aquaculture 326–329:90–98. doi:10.1016/j.aquaculture.2011.11.028 Lazzarotto V, Médale F, Larroquet L et al (2014) Long term feeding rainbow trout with fish meal and fish oil free diet: consequences on growth performance, whole body lipid content and fatty acid profile. In: Symposium proceedings ISFNF2014.16th international symposium on fish nutrition and feeding, May 25–30th 2014, Cairns, Australia, p 115. http://prodinra.inra.fr/record/264822 Liu Z, Zhou Y, Liu S et al (2014) Characterization and dietary regulation of oligopeptide transporter (PepT1) in different ploidy fishes. Peptides 52:149–156. doi:10.1016/j.peptides.2013.12.017 McLean E, Rønsholdt B, Sten C (1999) Gastrointestinal delivery of peptide and protein drugs to aquacultured teleosts. Aquaculture 177:231–247. doi:10.1016/S0044-8486(99)00087-3 Moore S (1968) Amino acid analysis: aqueous dimethyl sulfoxide as solvent for the ninhydrin reaction. J Biol Chem 243:6281–6283. http://www.jbc.org/content/243/23/6281 Naylor RL, Hardy RW, Bureau D et al (2009) Feeding aquaculture in an era of finite resources. Proc Natl Acad Sci USA 106:15103–15110. doi:10.1073/pnas.0905235106 NRC—National Research Council (2011) Nutrient requirements of fish. National Academic Press, Washington, DC Olsen RE, Myklebust R, Kaino T, Ringo E (1999) Lipid digestibility and ultrastructural changes in the enterocytes of Arctic char (Salvelinus alpinus L.) fed linseed oil and soybean lecithin. Fish Physiol Biochem 21:35–44 Olsen RE, Myklebust R, Ringo E, Mayhew TM (2000) The influences of dietary linseed oil and saturated fatty acids on caecal enterocytes in Arctic char (Salvelinus alpinus L.): a quantitative ultrastructural study. Fish Physiol Biochem 22:207–216. doi:10.1023/A:1007879127182 Ostaszewska T, Kamaszewski M, Grochowski P et al (2010) The effect of peptide absorption on PepT1 gene expression and digestive system hormones in rainbow trout (Oncorhynchus mykiss). Comp Biochem Physiol A: Mol Integr Physiol 155:107–114. doi:10.1016/j.cbpa.2009.10.017 Polakof S, Skiba-Cassy S, Kaushik S et al (2012) Glucose and lipid metabolism in the pancreas of rainbow trout is regulated at the molecular level by nutritional status and carbohydrate intake. J Comp Physiol B 182(4):507–516. doi:10.1007/s00360-011-0636-5 Epub 2011 Dec 22 Richard N, Mourente G, Kaushik S, Corraze G (2006) Replacement of a large portion of fish oil by vegetable oils does not affect lipogenesis, lipid transport and tissue lipid uptake in European seabass (Dicentrarchus labrax L.). Aquaculture 261:1077–1087. doi:10.1016/j.aquaculture.2006.07.021 Romo Vaquero M, Yáñez-Gascón M-J, Garcia Villalba R et al (2012) Inhibition of gastric lipase as a mechanism for body weight and plasma lipids reduction in Zucker rats fed a rosemary extract rich in carnosic acid. PLoS ONE 7(6):e39773. doi:10.1371/journal.pone.0039773 Ruohonen K, Grove DJ, McIlroy J (1997) The amount of food ingested in a single meal by rainbow trout offered chopped herring, dry and wet diets. J Fish Biol 51:93–105. doi:10.1006/jfbi.1997.0415 Rust MB (2002) Nutritional physiology. In: Halver JE, Hardy RW (eds) Fish nutrition, 3rd edn. Academic Press, San Diego, pp 454–504 Santigosa E, Sánchez J, Médale F et al (2008) Modifications of digestive enzymes in trout (Oncorhynchus mykiss) and sea bream (Sparus aurata) in response to dietary fish meal replacement by plant protein sources. Aquaculture 282:68–74. doi:10.1016/j.aquaculture.2008.06.007 Santigosa E, García-Meilán I, Valentin JM et al (2011) Modifications of intestinal nutrient absorption in response to dietary fish meal replacement by plant protein sources in sea bream (Sparus aurata) and rainbow trout (Onchorynchus mykiss). Aquaculture 317:146–154. doi:10.1016/j.aquaculture.2011.04.026 Sauvant D, Perez J-M, Tran G (2004) Tables INRA-AFZ de composition et de valeur nutritive des matières premières destinées aux animaux d’élevage: porcs, volailles, bovins, ovins, caprins, lapins, chevaux, poissons. Seconde édition revue et corrigée, mars 2004, INRA Editions Versailles, 304 p. Coord. ISBN:2-7380-1046-6 2002 Sire MF, Vernier JM (1992) Intestinal absorption of protein in teleost fish. Comp Biochem Physiol A Physiol 103:771–781. doi:10.1016/0300-9629(92)90180-X Wøjdemann M, Riber C, Bisgaard T et al (1999) Inhibition of human gastric lipase by intraduodenal fat involves glucagon-like peptide-1 and cholecystokinin. Regul Pept 80:101–106. doi:10.1016/S0167-0115(99)00011-7 Yamamoto T, Tatsuya U, Akiyama T (1998) Postprandial changes in plasma free amino acid concentrations of rainbow trout fed diets containing different protein sources. Fish Sci 64(3):474–481. doi:10.2331/fishsci.64.474 Yúfera M, Moyano FJ, Astola A et al (2012) Acidic digestion in a teleost: postprandial and circadian pattern of gastric pH, pepsin activity, and pepsinogen and proton pump mRNAs expression. PLoS ONE 7:1–9. doi:10.1371/journal.pone.0033687