Postcranial morphology and the locomotor habits of living and extinct carnivorans

Journal of Morphology - Tập 274 Số 2 - Trang 121-146 - 2013
Joshua X. Samuels1, Julie Meachen2, Stacey Akemi Sakai3
1John Day Fossil Beds National Monument, Kimberly, Oregon 97848
2National Evolutionary Synthesis Center, Durham, North Carolina 27705
3Department of Forensic Science, Virginia Commonwealth University, Richmond, Virginia 23284

Tóm tắt

AbstractMembers of the order Carnivora display a broad range of locomotor habits, including cursorial, scansorial, arboreal, semiaquatic, aquatic, and semifossorial species from multiple families. Ecomorphological analyses from osteological measurements have been used successfully in prior studies of carnivorans and rodents to accurately infer the locomotor habits of extinct species. This study uses 20 postcranial measurements that have been shown to be effective indicators of locomotor habits in rodents and incorporates an extensive sample of over 300 individuals from more than 100 living carnivoran species. We performed statistical analyses, including analysis of variance (ANOVA) and stepwise discriminant function analysis, using a set of 16 functional indices (ratios). Our ANOVA results reveal consistent differences in postcranial skeletal morphology among locomotor groups. Cursorial species display distal elongation of the limbs, gracile limb elements, and relatively narrow humeral and femoral epicondyles. Aquatic and semiaquatic species display relatively robust, shortened femora and elongate metatarsals. Semifossorial species display relatively short, robust limbs with enlarged muscular attachment sites and elongate claws. Both semiaquatic and semifossorial species have relatively elongate olecranon process of the ulna and enlarged humeral and femoral epicondyles. Terrestrial, scansorial, and arboreal species are characterized by having primarily intermediate features, but arboreal species do show relatively elongate manual digits. Morphological indices effectively discriminate locomotor groups, with cursorial and arboreal species more accurately classified than terrestrial, scansorial, or semiaquatic species. Both within and between families, species with similar locomotor habits converge toward similar postcranial morphology despite their independent evolutionary histories. The discriminant analysis worked particularly well to correctly classify members of the Canidae, but not as well for members of the Mustelidae or Ursidae. Results are used to infer the locomotor habits of extinct carnivorans, including members of several extinct families, and also 12 species from the Pleistocene of Rancho La Brea. J. Morphol., 2013. © 2012 Wiley Periodicals, Inc.

Từ khóa


Tài liệu tham khảo

Anderson E, 1970, Quaternary evolution of the genus Martes (Carnivora, Mustelidae), Acta Zool Fenn, 130, 1

Anderson E, 1994, Martens, Sables and Fishers: Biology and Conservation, 13

10.1111/j.1469-7998.1996.tb05402.x

10.1002/1097-4687(200101)247:1<51::AID-JMOR1003>3.0.CO;2-#

10.1002/jmor.1114

10.1080/03115510408619283

10.1644/1545-1410(2002)713<0001:AL>2.0.CO;2

Baker CM, 1992, Atilax paludinosus, Mammalian Species, 408, 1

10.1017/CBO9780511529924.011

10.2307/3503817

10.2307/3503974

10.2307/3503815

10.1644/783.1

10.2307/1006119

Bocherens H, 1995, Stable isotopes (C‐13, N‐15) and paleodiet of the giant short‐faced bear (Arctodus simus), Comptes Rendus De L Academie Des Sciences Serie II, 320, 779

10.1111/j.1469-7998.1999.tb00190.x

10.1111/j.1365-2907.1997.tb00370.x

10.4159/harvard.9780674184404.c5

10.2307/3503982

10.1111/j.1096-3642.2007.00333.x

10.1644/1545-1410(2005)766[0001:OM]2.0.CO;2

10.2307/3503918

10.2307/3503800

Davis DD, 1964, The giant panda: A morphological study of evolutionary mechanisms, Fieldiana: Zoology, 3, 1

10.2307/3503828

10.2307/3503796

10.1644/827.1

Dunstone N, 1979, Swimming and diving behavior of the mink (Mustela vison Schreber), Carnivore, 2, 56

10.1016/j.ympev.2010.01.033

10.1017/S0952836903004485

10.2307/3503844

1973 Cornell University Press Ithaca NY RF Ewer The Carnivores

10.1080/02724630903416027

10.1666/09062.1

10.2307/1382481

10.1093/icb/36.6.628

10.1644/1545-1410(2002)696<0001:HM>2.0.CO;2

Flynn JJ, 2005, Origin, Timing, and Relationships of the Major Clades of Extant Placental Mammals, 175

10.1080/10635150590923326

10.2307/3504086

10.1016/j.palaeo.2007.12.011

10.1111/j.1469-7998.2006.00246.x

1974 John Wiley and Sons New York PP Gambaryan How mammals run: Anatomical adaptations

10.1111/j.1469-7998.1993.tb02626.x

10.1016/j.ympev.2006.05.034

10.1098/rspb.2003.2521

10.1666/0094-8373(2003)029<0429:LTIEWE>2.0.CO;2

10.2307/3503930

10.2307/3504195

10.1159/000145627

Hearst JM, 2011, The Other Saber‐Tooths: Scimitar‐Tooth Cats of the Western Hemisphere, 123

10.1002/(SICI)1097-4687(199802)235:2<121::AID-JMOR3>3.0.CO;2-C

10.1671/0272-4634(2006)26[422:PAOVMC]2.0.CO;2

10.2307/1382324

Heinrich RE, 1997, Postcranial morphology and locomotor behaviour of two Early Eocene miacoid carnivorans, Vulpavus and Didymictis, Palaeontology, 40, 279

10.2307/3503882

Hendey QB, 1980, Agriotherium (Mammalia: Ursidae) from Langebaanweg, South Africa and relationships of the genus, Ann South African Museum, 81, 1

10.1002/jmor.1051550108

10.4159/harvard.9780674184404.c3

10.4159/harvard.9780674184404.c6

10.1644/08-MAMM-A-262R1.1

Howell AB, 1930, Aquatic Mammals: Their Adaptations to Life in the Water

Howell AB, 1944, Speed in Animals. Their Specialization for Running and Leaping

10.1644/08-MAMM-A-039.1

Hunt RM, 2009, Long‐legged pursuit carnivorans (Amphicyonidae, Daphoeninae) from the Early Miocene of North America, B Am Mus Nat Hist, 318, 1

10.1644/1545-1410(2001)686<0001:MM>2.0.CO;2

10.1644/786.1

10.1007/BF01041590

10.1016/j.mambio.2009.10.002

10.1126/science.1122277

10.2307/3503967

Kinlaw A, 1995, Spilogale putorius, Mammalian Species, 511, 1

10.2307/1379214

10.2307/3504197

10.1016/j.ympev.2005.10.017

10.1016/j.ympev.2006.10.003

10.1186/1741-7007-6-10

10.2307/3503919

Kurtén B, 1952, The Chinese Hipparion fauna. A quantitative survey with comments on the ecology of the machairodonts and hyaenids and the taxonomy of the gazelles, Soc Sci Fennica Commentat Biol, 13, 1

Kurtén B, 1967, Pleistocene bears of North America 2. Genus Arctodus, short‐faced bears, Acta Zool Fenn, 117, 1

10.1644/05-MAMM-A-251R1.1

10.2307/3504377

10.2307/3504420

10.1644/1545-1410(2001)647<0001:UA>2.0.CO;2

10.1644/1545-1410(2002)698<0001:IS>2.0.CO;2

10.1644/1545-1410(2002)714<0001:VZ>2.0.CO;2

10.1644/1545-1410(2001)680<0001:GG>2.0.CO;2

10.2307/3504236

10.2307/3504417

10.1006/jhev.1996.0103

Lewis ME, 2011, Carnivoran Evolution: New Views on Phylogeny, Form and Function, 411

10.1046/j.0962-1083.2001.01452.x

10.2307/3504047

10.1111/j.1558-5646.2011.01289.x

10.1086/660020

10.2307/3503959

10.1111/j.1466-8238.2010.00643.x

10.1016/j.yqres.2010.09.010

10.1007/978-1-4757-4716-4_20

10.1017/CBO9780511529924.014

10.1017/CBO9780511529924.015

Martin LD, 2011, The Other Saber‐tooths: Scimitar‐tooth Cats of the Western Hemisphere, 3

10.1006/qres.1995.1090

10.2307/3504038

10.1073/pnas.1113788109

10.1002/jmor.10712

10.1371/journal.pone.0011412

Meachen‐Samuels JA, 2012, Morphological convergence of the prey‐killing arsenal of sabertooth predators, Paleobiology, 38, 715, 10.1666/10036.1

10.2307/3503924

10.1093/czoolo/57.3.269

10.1080/02724634.2011.550357

10.1007/s10914-011-9156-z

10.1007/s11692-011-9135-6

Merriam JC, 1912, The fauna of Rancho La Brea, Part II, Canidae, Memoirs of the University of California, 1, 215

10.2307/3504059

10.2307/3504160

Munthe K, 1989, The skeleton of the Borophaginae (Carnivora, Canidae), morphology and function, 1

10.5962/bhl.title.4072

Nowak RM, 2005, Walker's Carnivores of the World

10.2307/3504138

Pasitschniak‐Arts M, 1995, Gulo gulo, Mammalian Species, 499, 1

10.2307/3504321

Polly PD, 2011, Carnivoran Evolution: New Views on Phylogeny, Form and Function, 374

Powell RA, 1981, Martes pennanti, Mammalian Species, 156, 1

10.1644/1545-1410(2000)636<0001:EB>2.0.CO;2

10.1671/0272-4634-28.4.1171

10.2307/3504320

Rieger I, 1981, Hyaena hyaena, Mammalian Species, 150, 1

10.2307/3503840

10.1002/jmor.10662

10.1002/jmor.1110

10.1002/jmor.10025

10.1111/j.1096-3642.2007.00303.x

Schaller GB, 1967, The Deer and the Tiger: A Study of Wildlife in India, 370

Schaller GB, 1972, The Serengeti Lion: A Study of Predator Prey Relationships

10.2307/1005507

10.2307/3504434

10.1080/08912960500476366

10.1111/j.0014-3820.2006.tb01160.x

Stein BR, 2000, Life Underground: The Biology of Subterranean Rodents, 19

10.1080/02724634.1991.10011375

10.1111/j.1469-7998.1997.tb02939.x

10.2307/3504333

Sunquist M, 2002, Wildcats of the World

Tarasoff FJ, 1972, Functional Anatomy of Marine Mammals, 333

10.2307/3504028

10.2307/3503845

10.2307/3503826

10.1007/978-1-4757-4716-4_15

10.2307/3504293

10.1206/574.1

Trapp G, 1975, The Wild Canids, Their Systematics, Behavioral Ecology and Evolution, 164

Turner A, 1997, The Big Cats and Their Fossil Relatives

10.1017/S0094837300011702

10.1644/721

10.1644/1545-1410(2001)674<0001:SG>2.0.CO;2

10.2307/3504085

10.1080/02724634.1987.10011651

10.1017/S0094837300010691

10.1080/02724634.1990.10011827

10.2307/3503883

10.1644/715

Wang X, 1993, Transformation from plantigrady to digitigrady: functional morphology of locomotion in Hesperocyon (Canidae: Carnivora), Am Mus Novit, 3069, 1

Wang X, 1994, Phylogenetic systematics of the Hesperocyoninae (Carnivora: Canidae), B Am Mus Nat Hist, 221, 1

Wang X, 1999, Phylogenetic systematics of the Borophaginae (Carnivora: Canidae), B Am Mus Nat Hist, 243, 1

10.2307/3504213

Wayne RK, 1989, Carnivore Behavior, Ecology, and Evolution, 465, 10.1007/978-1-4757-4716-4_18

Webb PW, 1985, Functional vertebrate morphology, 11

Werdelin L, 1981, The evolution of lynxes, Annales Zoologici Fennici, 18, 37

10.1017/S1477201904001518

10.1111/j.1096-3642.1953.tb00152.x

Wozencraft W, 1993, Mammal Species of the World, 279

10.1002/ajp.20391

10.1644/727

10.1644/728

10.1038/nature01303