Nội dung được dịch bởi AI, chỉ mang tính chất tham khảo
Tổng hợp sau khi tổng hợp khung hữu cơ liên kết từ tính chức năng hóa axit boric như một đầu dò affinity cho việc làm giàu N-glycopeptides
Tóm tắt
Một loại khung hữu cơ liên kết từ tính chức năng hóa axit boric mới (mCOF) với polyethyleneimine (PEI) làm chất liên kết (được ký hiệu là mCOF@PEI@B(OH)2) đã được chế tạo thông qua một chiến lược tổng hợp sau. Điều này cho thấy một con đường khả thi để xây dựng các khung hữu cơ liên kết từ tính chức năng hóa axit boric. Dựa trên hóa học của axit boric, mCOF@PEI@B(OH)2 có cấu trúc lõi-shell thu được có khả năng chọn lọc tách glycopeptide thông qua các nhóm axit boronic được điều chỉnh. mCOF@PEI@B(OH)2 thể hiện hiệu suất xuất sắc với khả năng tái sử dụng tốt (mười chu kỳ), giới hạn phát hiện thấp (0.5 fmol·μL−1), hiệu ứng phân tách kích thước, và công suất tải tương đối cao (80 μg·mg−1), hiệu suất phục hồi (94.9 ± 2.8%), và tính chọn lọc (HRP digest:BSA digest = 1:500). Phép phát hiện được thực hiện bằng cách sử dụng sắc ký khối miễn dịch hấp dẫn bằng laser hỗ trợ (MALDI-TOF MS). Thêm vào đó, 37 glycopeptides nội sinh đã được thu nhận từ nước bọt của con người bằng mCOF@PEI@B(OH)2, cung cấp bằng chứng hiệu quả cho khả năng thu hút glycopeptides nồng độ thấp từ các mẫu sinh học thực tế.
Từ khóa
Tài liệu tham khảo
Riley NM, Hebert AS, Westphall MS, Coon JJ (2019) Capturing site-specific heterogeneity with large-scale N-glycoproteome analysis. Nat Commun 10:1311
Zhang N, Hu XF, Chen HL, Deng CH, Sun NR (2021) Specific enrichment and glycosylation discrepancy profiling of cellular exosomes using a dual-affinity probe. Chem Commun 57:6249–6252
Sun NR, Yu HL, Wu H, Shen XZ, Deng CH (2021) Advanced nanomaterials as sample technique for bio-analysis. Trac-Trends Anal Chem 135:116168
Oliveira-Ferrer L, Legler K, Milde-Langosch K (2017) Role of protein glycosylation in cancer metastasis. Semin Cancer Biol 44:141–152
Watanabe Y, Allen JD, Wrapp D, McLellan JS, Crispin M (2020) Site-specific glycan analysis of the SARS-CoV-2 spike. Science 369:330–333
Raman R, Raguram S, Venkataraman G, Paulson JC, Sasisekharan R (2005) Glycomics: an integrated systems approach to structure-function relationships of glycans. Nat Methods 2:817–824
Sun NR, Wu H, Shen XZ, Deng CH (2019) Nanomaterials in proteomics. Adv Funct Mater 29:1900253
Parker BL, Thaysen-Andersen M, Solis N, Scott NE, Larsen MR, Graham ME, Packer NH, Cordwell SJ (2013) Site-specific glycan-peptide analysis for determination of N-glycoproteome heterogeneity. J Proteome Res 12:5791–5800
Li J, Huan WW, Xu KW, Wang BC, Zhang JS, Zhu BB, Wu MJ, Wang JH (2020) Gold nanoparticle-glutathione-functionalized porous graphene oxide-based hydrophilic beads for the selective enrichment of N-linked glycopeptides. Microchim Acta 187:518
Cao WQ, Liu MQ, Kong SY, Wu MX, Zhang Y, Yang PY (2021) Recent advances in software tools for more generic and precise intact glycopeptide analysis. Mol Cell Proteomics 20:100060
Li K, Zhao B, Yu QC, Xu J, Li XW, Wei DD, Qian LS, Liu GD, Wang WR (2020) Porous graphene oxide/chitosan beads with honeycomb-biomimetic microchannels as hydrophilic adsorbent for the selective capture of glycopeptides. Microchim Acta 187:324
Sun FX, Suttapitugsakul S, Wu RH (2019) Enzymatic tagging of glycoproteins on the cell surface for their global and site-specific analysis with mass spectrometry. Anal Chem 91:4195–4203
Song E, Zhu R, Hammoud ZT, Mechref Y (2014) LC-MS/MS quantitation of esophagus disease blood serum glycoproteins by enrichment with hydrazide chemistry and lectin affinity chromatography. J Proteome Res 13:4808–4820
Sun NR, Wu H, Chen HM, Shen XZ, Deng CH (2019) Advances in hydrophilic nanomaterials for glycoproteomics. Chem Commun 55:10359–10375
Wang HP, Jiao FL, Gao FY, Huang JJ, Zhao Y, Shen YH, Zhang YJ, Qian XH (2017) Facile synthesis of magnetic covalent organic frameworks for hydrophilic enrichment of N-glycopeptides. J Mater Chem B 5:4052–4059
Li YL, Wang JW, Sun NR, Deng CH (2017) Glucose-6-phosphate-functionalized magnetic microsphere as novel hydrophilic probe for specific capture of N-linked glycopeptides. Anal Chem 89:11151–11158
Cote AP, Benin AI, Ockwig NW, O’Keeffe M, Matzger AJ, Yaghi OM (2005) Porous, crystalline, covalent organic frameworks. Science 310:1166–1170
Baldwin LA, Crowe JW, Pyles DA, Mcgrier PL (2016) Metalation of a mesoporous three-dimensional covalent organic framework. J Am Chem Soc 138:15134–15137
Du Y, Yang H, Whiteley JM, Wan S, Jin Y, Lee SH, Zhang W (2016) Ionic covalent organic frameworks with spiroborate linkage. Angew Chem Int Ed 55:1737–1741
Xu H, Gao J, Jiang D (2015) Stable, crystalline, porous, covalent organic frameworks as a platform for chiral organocatalysts. Nat Chem 7:905–912
Lohse MS, Bein T (2018) Covalent organic frameworks: structures, synthesis, and applications. Adv Funct Mater 28:1705553
Segura JL, Mancheño MJ, Zamora F (2016) Covalent organic frameworks based on Schiff-base chemistry: synthesis, properties and potential applications. Chem Soc Rev 45:5635–5671
Wu YL, Sun NR, Deng CH (2020) Construction of magnetic covalent organic frameworks with inherent hydrophilicity for efficiently enriching endogenous glycopeptides in human saliva. ACS Appl Mater Interfaces 12:9814–9823
Sun Q, Aguila B, Perman J, Earl LD, Abney CW, Cheng YC, Wei H, Nguyen N, Wojtas L, Ma SQ (2017) Postsynthetically modified covalent organic frameworks for efficient and effective mercury removal. J Am Chem Soc 139:2786–2793
Mitra S, Sasmal HS, Kundu T, Kandambeth S, Illath K, Diaz D, Banerjee R (2017) Targeted drug delivery in covalent organic nanosheets (CONs) via sequential postsynthetic modification. J Am Chem Soc 139:4513–4520
Ma YF, Wang LJ, Zhou YL, Zhang XX (2019) A facilely synthesized glutathione-functionalized silver nanoparticles-grafted covalent organic framework for rapid and highly efficient enrichment of N-linked glycopeptides. Nanoscale 11:5526–5534
Ding FJ, Chu ZY, Zhang QQ, Liu HY, Zhang WB (2019) Facile synthesis of layered mesoporous covalent organic polymers for highly selective enrichment of N-glycopeptides. Anal Chim Acta 1057:145–151
Xie YQ, Liu QJ, Li Y, Deng CH (2018) Core-shell structured magnetic metal-organic framework composites for highly selective detection of N-glycopeptides based on boronic acid affinity chromatography. J Chromatogr A 1540:87–93
Zhang Y, Zhang C, Jiang HC, Yang PY, Lu HJ (2015) Fishing the PTM proteome with chemical approaches using functional solid phases. Chem Soc Rev 44:8260–8287
Gao CH, Bai J, He YT, Zheng Q, Ma WD, Lin Z (2019) Post-synthetic modification of phenylboronic acid-functionalized magnetic covalent organic frameworks for specific enrichment of N-linked glycopeptides. ACS Sustain Chem Eng 7:18926–18934
Yang SS, Wang C, Yu XZ, Shang WB, Chen DDY, Gu ZY (2020) A hydrophilic two-dimensional titanium-based metal-organic framework nanosheets for specific enrichment of glycopeptides. Anal Chim Acta 1119:60–67
Sun QQ, Gao CH, Ma WD, He YT, Wu J, Luo KL, Ouyang D, Lin Z, Cai ZW (2020) A high-throughput screening of bisphenols using magnetic covalent organic frameworks as a SELDI-TOF-MS probe. Microchim Acta 187:370